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DIRICHLET   PRINCIPLE 
 

Sava Grozdev 
Institute of Mathematics, Bulgarian Academy of Sciences 

 
A fundamental rule, i.e. a principle, states: if m objects are distributed into n groups 
and m > n, then at least two of the objects are in one and the same group.  
 
People from different countries call this principle differently. For example in France it is 
known as “the drawers’ principle”, in England – as “the pigeon-hole principle”, while in 
Bulgaria and Russia – as the Dirichlet principle. The principle is connected with the 
name of the great German mathematician Gustav Lejeune-Dirichlet (1805 – 1859) 
although it has been well known quite before him. The merit of Dirichlet is not in 
discovering the above trivial fact but in applying it to solve numerous interesting 
problems in Number Theory. Dirichlet himself did not settle parrots or rabbits into cages 
and did not distribute boxes into drawers either. In one of his scientific works he 
formulated a method of reasoning and based it on a principle, which took his name later. 
It was on the occasion of the distribution of the prime numbers in arithmetic 
progressions. The following theorem belongs to Dirichlet: the sequence an + b, where 
a and b are relatively prime, contains infinitely many prime numbers. This theorem 
is not under discussion in the present note.   
 
Using the “language of the drawers”, the Dirichlet principle establishes the existence of a 
drawer with certain properties. Thus, it is a statement for existence in fact. However, the 
principle does not propose an algorithm to find a drawer with desired properties and 
consequently it is of non-constructive character. Namely, constructive profs of existence 
stand closer to reasoning and are more convincing. It seems  that this is the main reason 
for the unexpectedness of numerous applications of the Dirichlet principle. The following 
problems are dedicated to such applications after additional reasoning.   

 
Problem 1. Let a, b, c and d be integers. Prove that the product  

(b – a)(c – a)(d – a)(c – b)(d – b)(d – c) 
is divisible by 12.  
Solution: The six factors of the product under consideration are formed by all the 
possible couples of the four integers. At least two of the four integers coincide modulo 3 
by the Dirichlet principle. Their difference therefore is a multiple of 3. Now either at least 
three of the four integers have the same parity, in which case three of the differences are 
even, or the four numbers have the property that two of them are odd and two are even.  
 
Problem 2. A student buys 17 pencils of 4 different colours. Find the greatest possible 
value of n to be sure that the student has bought at least n pencils of the same colour.  
Solution: If the student has bought at most 4 pencils of the same colour, then the total 
number of the bought pencils is 4.4 = 16 at most. This is a contradiction because 16 < 
17. Consequently n > 4 and the least possible value is n = 5. The drawers in this case 
are the different colours of pencils, i.e. they are 4. Putting 17 pencils into 4 drawers we 
obtain at least one drawer with not less than 5 pencils.  

 
In the solution of the last problem it is used the following more general form of the 
Dirichlet principle: if m subjects are distributed into n groups and m > nk, where k is 
a natural number, then at least k + 1 subjects fall into one of the groups.   
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Problem 3. 145 points are taken in a rectangle with dimensions 4 m x 3 m. Is it possible 
to cover at least 4 points by a square with dimensions 50 cm x 50 cm? 
Solution: The answer is positive. It is enough to divide the rectangle into 48 squares with 
dimensions 50 cm x 50 cm by lines parallel to the sides of the rectangle. The Dirichlet 
principle implies that at least 4 points are in one of the squares.  

 
Problem 4. A 5 х 5 square is divided into 25 unit squares, which are coloured in blue or 
red. Prove that there exist 4 monochromatic unit squares which lie in the intersection of 
2 rows and 2 columns of the initial square.   
Solution: Firstly consider the unit squares of a column as drawers. It follows by the 
Dirichlet principle that one of the colours is dominating in the chosen column. 
Analogously, one of the colours is dominating in each of the other columns.  Now the 
drawers are the 5 columns, while the subjects to be distributed are the dominating 
colours of all columns. It follows by the Dirichlet principle again that the dominating 
colour is one and the same in 3 columns at least. Thus, there are 3 columns and each of 
them is with 3 monochromatic unit squares at least. Assume that the common colour is 
blue. Further, enumerate the rows of the initial square by the integers from 1 to 5 and 
consider 5 drawers enumerating them by the same integers. Juxtapose the numbers of 
the corresponding rows to the blue unit squares in the 3 columns under consideration. 
The problem is reduced to a distribution of 9 integers (or more) among the integers 1, 2, 
3, 4 and 5 into 5 drawers. Each integer should be put into the drawer with the 
corresponding number. We have to prove that there are 2 drawers such that each of 
them is with 2 integers in it at least. At first notice that a drawer exists with 2 integers at 
least. Two cases are possible. In the first one assume that a drawer exists with 3 
integers. Then the 6 remaining integers should be distributed into in the remaining 4 
drawers. It follows by the Dirichlet principle that one of them contains 2 integers at least. 
This drawer together with the drawer with 3 integers solves the problem. In the second 
case consider a drawer with 2 integers. The remaining 7 integers should be distributed 
into the remaining 4 drawers. One of them contains 2 integers according to the Dirichlet 
principle and this solves the problem again.   

 
Problem 5. Given is a 5 х 41 rectangle. It is divided into 205 unit squares, which are 
coloured in blue or red. Prove that there exist 9 monochromatic unit squares which lie in 
the intersection of 3 rows and 3 columns of the initial square.   
Solution: As in the previous problem one of the colours is dominating in all the 41 
columns. At least 21 columns are with one and the same dominating colour since the 
colours are 2. Assume that this colour is blue. There are 3 blue unit squares at least in 
each of the 21 columns under consideration. Enumerate the blue unit squares by the 
integers from 1 to 5 respecting the rows which contain them. Thus, a triplet is juxtaposed 
to each of the 21 columns. Each triplet is formed by the numbers of the blue unit 
squares. The total number of the triplets is equal to 21. On the other hand all possible 
triplets are 10 using the integers 1, 2, 3, 4 and 5. It follows by the Dirichlet principle that 
3 of them coincide at least. Thus, we are done.   

 
Problem 6. 44 queens are located on an 8 х 8 chess board. Prove that each of them 
beats at least one of the others.   
Solution: Each queen controls 21 fields at least. Considering the field on which a queen 
is situated we get at least 22 fields of control. Suppose that there is one queen which 
does not beat any other. It controls 22 fields. The remaining fields are 64 – 22 = 42. We 
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have 43 other queens and it follows by the Dirichlet principle that at least one of them is 
situated on a beat field by the queen under consideration. This is a contradiction.     

 
Problem 7. Find the maximal number of kings on an ordinary chess board in a way that 
no two of them beat each other.   
Solution: Each king controls 4 fields at least. The number of the controlled fields by a 
king is 4 exactly when the king is situated at one of the 4 vertices of the chess board 
(otherwise the king controls more than 4 fields). Divide the board into 16 squares 4 х 4. It 
follows that it is not possible to situate more than 16 kings in a way that the condition of 
the problem is realized, because two kings should not be in one and the same 4 х 4 
square. An example of 16 is given below:   

 

X  X  X  X  

        
X  X  X  X  

        
X  X  X  X  

        
X  X  X  X  

        
 
 

Problem 8. Prove that there exist 2 integers among 12 two-digit different positive 
integers such that their difference is a two-digit integer with coinciding digits.   
Solution: If the drawers are the remainders modulo 11, then it follows by the Dirichlet 
principle that at least 2 of the integers are with the same remainder. The difference of 
these 2 integers is divisible modulo 11. At the same time each two-digit integer has 
coinciding digits when it is divisible by 11.   

 
Problem 9.  The natural numbers from 1 to 10 are written down in a column one after 
the other. Each of them is summed up with the number of its position in the column. 
Prove that at least 2 sums end with the same digit.   
Solution: Assume that all sums end with different digits. Then each of the last digits is 
equal to exactly one of the digits 0, 1, ..., 9. Otherwise the Dirichlet principle implies that 
2 of the last digits coincide. It follows by the assumption that the sum of the sums ends 
with the same digit as the sum 1 + 2 + ... + 9 = 45 does, i.e. in the digit 5. On the other 
hand the sum of the integers from 1 to 10 is equal 55. The sum of the numbers of the 
positions with the column is equal to 55, too. Thus the sum of the sums is equal to 110, 
which ends with 0. This is a contradiction to the assumption.       

 
Problem 10. Prove that there exist a natural number which is multiple of 2004 and its 
decimal representation contains 0-s and 1-s only. 
Solution: Consider 2005 integers which decimal representations contain only 1, 2, … , or 
2005 ones respectively, i.e. consider the integers: 1, 11, 111, ... , 11111...1. It follows by 
the Dirichlet principle that at least 2 of them have the same remainder modulo 2004. 
Their positive difference contains 0-s and 1-s only.      

 
Problem 11. Prove that there exist 2 integers among 52 non negative integers such that 
their sum or difference is a multiple of 100. Is the assertion valid for 51 non negative 
integers? 
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Solution: Consider the integers from 0 to 99, which are the possible remainders modulo 
100. Take 51 drawers and put the integers with remainder 0 into the first one, put the 
integers with remainder 1 or 99 into the second, the integers with remainder 2 or 98 – 
into the third, and so on, the integers with remainder 49 or 51 – into the fiftieth, the 
integers with remainder 50 – into the fifty first. It follows by the Dirichlet principle that at 
least 2 integers fall into one and the same drawer. If both integers have the same 
remainder then their difference is a multiple of 100. Otherwise the sum of their 
remainders is equal to 100 and consequently the sum of the integers themselves is a 
multiple of 100. The assertion is not valid for 51 non negative integers as shows the 
following example:  0, 1, 2, ... , 50.  

 
Problem 12. Given are 2006 arbitrary positive integers and each of them is not divisible 
by 2006. Prove that the sum of several of them is divisible by 2006.   

Solution: Denote the given integers by  and consider the following 2006 

integers: 

. 

The number of the possible remainders modulo 2006 is equal to 2006. If one of the 
remainders is equal to 0, then the problem is solved. Of course the remainder of the first 
number in the sequence is different from 0 according to the condition of the problem. If 
all the remainders are different from 0, then it follows by the Dirichlet principle that at 
least 2 of them are equal. In this case it is enough to consider the difference of these 2 
numbers.  
 
Problem 13. Given the integers 1, 2, ..., 200 and 101 of them are chosen. Prove that 
there exist 2 integers among the chosen ones such that the one of them divides the 
other.   
Solution: If a is odd and less than 200, denote the set {a, 2a, 4a, 8a, 16a, 32a, 64a, 
128a} by A. For each integer from 1 to 200 there exists an odd integer a < 200 such that 
the set A contains this integer. Since the number of the sets A is equal to 100 (this 
number is equal to the number of the odd integers from 1 to 200) and the number of the 
chosen integers is equal to 101, then it follows by the Dirichlet principle that at least 2 
integers fall into one and the same set. On the other hand if 2 integers are in one and 
the same set, then the one of them divides the other.   

 
Problem 14. Given are 986 different positive integers not greater than 1969. The 
greatest of them is odd. Prove that there exist 3 integers among the given ones such 
that the one is equal to the sum of the others.  
Solution: Denote the greatest integer by a. It is odd according to the condition of the 
problem.  Consider the differences between a and the other integers. Their number is 
equal to 985 and all of them are different. Together with the given integers there are 
1971 integers totally. Since 1971 > 1969 it follows by the Dirichlet principle that at least 2 
of the integers are equal. Consequently one of the differences coincides with one of the 

given 986 integers, i.e.  a – b = c. We have that , because a is odd. Thus a = b + c 

and we are done. Note that the number 986 of the given integers is essential. If the 
number is 985, then chose all odd integers which are not greater than 1969. Their 
number is exactly 985. On the other hand the sum of 2 odd integers is even and 
consequently the assertion of the problem is not valid in this case.               

      

1 2 2006, ,...,a a a

1 1 2 1 2 3 1 2 2006, , ,..., ...a a a a a a a a a     

cb 
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Problem 15. Given a 10 х 10 chess-board and positive integers are written down on its 
fields in such a way that the difference of any two horizontal or vertical neighbours does 
not exceed 5. Prove that at least 2 of the integers on the chess board are equal.  
Solution: Denote the greatest and the smallest of the written integers by a and b, 
respectively. If no 2 integers are equal, then it follows by the condition of the problem 
that a – b  99. Connect a and b by the shortest way moving through horizontal and 
vertical fields only. The maximal length of the way is 18 fields (9 horizontal and 9 
vertical). Thus, a is reached from b by adding 18 integers which differ by at most 5 (if 
neighbours), i.e. a  b + 18.5. Consequently b + 90  b + 99. The last inequality is 
impossible, which implies that at least 2 of the integers are equal.   

 
Problem 16. The integers from 1 to n2 are written down arbitrarily on the fields of an n x 
n chess board. Consider the following assertion: There exist 2 fields with a common side 
such that the difference of the integers on them is greater than 5. Prove that 

a) The assertion is not always true for n = 5;  
b) The assertion is always true for n > 5.   

Solution: a) Take a chess board 5 x 5 and write down the integers from 1 to 5 on the first 
row, write down the integers from 6 to 10 on the second row, the integers from 11 to 15 
– on the third row, the integers from 16 to 20 – on the fourth row and write down the 
integers from 21 to 25 on the fifth row. The maximal difference is equal to 5 in this 
example.   

b) Analogously to the previous problem the field with the integer n2 could be 
reached from the field with the integer 1 by horizontal and vertical moves through 2(n – 
1) fields at most. The integer 1 is increased by n2 – 1 and it follows by the Dirichlet 

principle that there exists a step at which the increase is not less than . 

When  the number  is greater than 5 and consequently the assertion is 

always true in this case. When n = 9 the increase from 1 to 81 is equal to 81 – 1 = 80 
and it is realized for 16 steps at most (8 horizontal moves and 8 vertical ones). If the 
number of the steps is at most 15 then the Dirichlet principle implies that there exists a 

step at which the increase is not less than . Again the number is greater than 5. 

Assume that there are exactly 16 steps. Now 80 : 16 = 5 and if there is a step at which 
the increase is less than 5, then the total increase is 76 at least at the remaining 15 
steps. It follows by the Dirichlet principle that there exists a step at which the increase is 
not less than 76 : 15, i.e. the increase is greater than 5. Finally consider the case when 
there is neither a step with an increase which is greater than 5 nor a step with an 
increase which is less than 5. Thus the increase is equal to 5 at each step. This means 
that starting from 1 the integers in the successive fields are 6, 11, 16, 21 and so on. On 
the other hand the way between 1 and 81 under consideration is not the only one. There 
are several other ways to reach 81 starting from 1. The integers on the corresponding 
fields of such a way should not be the same. This means that the increase is not equal 
to 5 at each step and one can repeat the above reasoning. It follows that the assertion is 
true for n = 9 too. By similar considerations the assertion could be proved for the cases n 
= 6, 7 and 8.  

Remark. It is valid the following general fact: If the integers from 1 to n2   

are written down on the fields of an n x n chess board, then there exist 2 fields with a 
common side such that the difference of the integers on them is not less than n. (Gerver, 



 

2

1

)1(2

12 




 n

n

n

10n
2

1n

15

80

( 2)n 
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M. L., A problem with integers in a table (in Russian), Qwant, 12, 1971, 24 – 27). The 
proof of this fact is rather complicated but the main idea is involved in the proof of the 
following: 

 
Problem 17. If the integers from 1 to 16 are written down on the fields of a 4 x 4 

chess board, then there exist 2 fields with a common side such that the difference of the 
integers on them is not less than 4. 

Solution:          

1 2 *  

3 *   

*   * 

  * 4 

Consider the position of the integers 1, 2, 3, 4 and put stars on their neighbour fields as 
shown. No matter how the integers 1, 2, 3, 4 are located the number of the stars is not 
less than 4. It follows by the Dirichlet principle that at least one of the stars should be 
substituted by an integer which is not less than 8 (the number of the integers 5, 6 and 7 
is exactly equal to 3). This ends the proof.   
 
Problem 18. The floor of a class room is coloured arbitrarily in black and white. Prove 
that there exist 2 monochromatic points on the floor such that the distance between 
them is exactly 1 m.   
Solution: Take an equilateral triangle on the floor with side 1 m. It follows by the Dirichlet 
principle that at least 2 of the vertices are monochromatic and we are done.   

 
Problem 19. The floor of a class room is coloured arbitrarily in black and white. Prove 
that there exist 3 collinear monochromatic points on the floor such that one of them lies 
in the middle of the segment connecting the others.   
Solution: Consider 5 collinear points A, B, C, D and E on the floor such that B and D are 
monochromatic (say white), AB = BD = DE and BC = CD. If at least one of the points A, 
C or E is white, than such a point together with B and D solves the problem. If all the 
three are black, then they solve the problem.  

 
Problem 20. Given 7 segments such that their lengths are greater than 10 cm and 
smaller than 1 m. Prove that a triangle could be constructed by 3 of them.   

Solution: Arrange the segments according to their size: . Use that if 

, then the segments ,  and  are sides of a triangle if and only 

if . Assume that no 3 of the segments form a triangle. Then  

 for all k = 1, 2, 3, 4 and 5. It follows from  and  that 

 and , which is a contradiction.   

 
Problem 21. Prove that at least 2 of the sides of an arbitrary convex polyhedron are with 
one and the same number of vertices.   
Solution: The sides of a polyhedron are polygons. Assume that each couple of sides of a 
polyhedron is with different number of vertices. Consider the side with the maximal 
number of vertices and denote this number by n. It follows that the side under 
consideration has n edges and consequently it is adjacent to n sides of the polyhedron. 

721 ... aaa 

21   kkk aaa ka 1ka 2ka

21   kkk aaa

21   kkk aaa 101 a 102 a

80,50,30,20 6543  aaaa 1307 a
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The assumption implies that each of the adjacent sides has 3, 4, 5, ..., n – 2 or n – 1 
vertices. Since the number of the integers from 3 to n – 1 is equal to n – 3 it follows by 
the Dirichlet principle that at least 2 of the adjacent sides are with the same number of 
vertices. This is a contradiction.  

 
Problem 22. 9 vertices of a regular icosagon (20-gon according to the Greek “ico” which 
means twenty) are coloured in red. Prove that there exists an isosceles triangle with red 
vertices.   
Solution: Enumerate the successive vertices of the polygon by the integers from 1 to 20 
clock-wisely. The vertices with numbers 1, 5, 9, 13 and 17; with numbers 2, 6, 10, 14 
and 18; with numbers 3, 7, 11, 15 and 19; with numbers 4, 8, 12, 16 and 20 determine 4 
regular pentagons. Since the coloured vertices are 9 it follows by the Dirichlet principle 
that at least 3 of them belong to one and same pentagon. On the other hand any 3 
vertices of a pentagon form an isosceles triangle and we are done.   

 
Problem 23. Several arcs of a circle are coloured in red (some of the arcs could 
overlap). If the sum of the lengths of the coloured arcs is less than the half of the circle’s 
length, then prove that there exists a diameter of the circle with uncoloured end points.   
Solution: Also colour the arcs in red which are symmetric to the given ones with respect 
to the center of the circle. Then the sum of the lengths of all coloured arcs does not 
exceed the length of the circle. Consequently a point exists on the circle which is not 
coloured. This point together with the antipodal one solves the problem.       

 
Problem 24. More of the half surface of a spherical planet is covered by land while the 
other part is covered by water. Prove that at least one pair of diametrically opposite 
points lie on the land.   
Solution: Denote the set of the points on the land of the planet by A. Let B be the set of 
the points which are diametrically opposite to the points of A. Since A covers the greater 
part of the planet surface it follows that B also covers the greater part of the planet 
surface. If there is a point in B which lies on the land then we are done. If such a point 
does not exist it follows that the greater part of the planet surface is water and this 
contradicts to the condition of the problem.   

 
Problem 25. A 6 х 6 square is divided into 36 closed unit squares. Find the maximal 
number of unit squares which could be coloured in blue in a way that no blue unit 
squares have common points.  
Solution: Divide the given square into 9 squares 2 х 2 which are the drawers. It is not 
possible to have 2 blue unit squares in such a square 2 x 2. It follows by the Dirichlet 
principle that the searched number is equal to 9 at most. The given example is a 
realization of 9 blue unit squares which are marked by Х:  

        

Х  Х  Х  

      

Х  Х  Х  
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Х  Х  Х  

Problem 26. Prove that it is not possible to cover an equilateral triangle with side a by 5 

equilateral triangles with sides smaller than .  

Solution: Let  be the equilateral triangle with side a and M, N and P be the 

midpoints of the sides AB, BC and AC, respectively. Assume that  is covered by 5 

equilateral triangles with sides smaller than . It follows by the Dirichlet principle that 

at least 2 of the 6 points A, B, C, M, N and P are located in one of the 5 triangles. Then, 

the length of the side of that triangle is not less than , which is a contradiction.    

 
Problem 27. Given a square with side 1 and 101 points are taken in it in such a way that 
no 3 of them are collinear. Prove that 3 of the points form a triangle with area not greater 
than 0,01.  
Solution: Divide the square into 50 equal rectangles. It could be done by dividing the 
side of the square into 10 equal parts and the adjacent side into 5 equal parts. The 
horizontal and vertical lines through the points of division divide the square into 50 equal 
rectangles with dimensions 0,2 х 0,1. It follows by the Dirichlet principle that at least 3 of 
the 101 points fall into one and the same rectangle. Now use the following fact: if a 
triangle is situated in a parallelogram, then the area of the triangle does not exceed the 
half area of the parallelogram. In the concrete situation the area of the rectangle is equal 
to 0,02 and consequently the area of the triangle does not exceed 0,01. Thus we are 
done.   

 
What is used in the previous problem is a particular case (for a rectangle) of the 
following: 
Lemma. If a triangle is situated in a parallelogram, then the area of the triangle does not 
exceed the half area of the parallelogram.   
Proof: If one of the sides of the triangle lies on a side of the parallelogram, then it does 
not exceed the corresponding side of the parallelogram. At the same time the altitude of 
the triangle to the side under consideration does not exceed the altitude of the 
parallelogram. Now the assertion is obvious. If one of the sides of the triangle is parallel 
to a side of the parallelogram, then obviously the reasoning can be reduced to the 
previous one by taking a smaller parallelogram. It remains the case when no side of the 
triangle lies on a side of the parallelogram and no side of the triangle is parallel to a side 
of the parallelogram. In this case take lines through the vertices of the triangle which are 
parallel to one and the same side of the parallelogram. One of the lines is between the 
other two and it divides the parallelogram into 2 new parallelograms. Also, it divides the 
triangle into 2 new triangles. Already, each of the new triangles has a side on a side of a 
new parallelogram. Further, apply the reasoning from the beginning for this case.      

 
Problem 28. A convex 10-gon is situated in a square with side 1. Prove that there exists 
a triangle with vertices among the vertices of the 10-gon and with area which does not 
exceed 0,08.  

Solution: Denote the 10-gon by . Since it is situated in a square, then its 

perimeter does not exceed the perimeter of the square, i.e. it does not exceed 4. Take 

a
2

1

ABC

ABC

a
2

1

a
2

1

1021 ...AAA
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the sum of the lengths of two consecutive sides of the 10-gon and consider all such 

sums, i.e. consider the following 10 numbers: , , …, 

. The sum of the 10 numbers is equal to the double perimeter of the 10-

gon, i.e. it does not exceed 8. It follows by the Dirichlet principle that at least one of the 

10 numbers does not exceed 0,8. Let n be such that . Further, 

use that the area of a triangle does not exceed the semi-product of any 2 sides of the 
triangle.  In fact the area is equal to the semi-product of a side and the altitude to it but 
the altitude does not exceed each of the adjacent sides. Consequently, a positive integer 

n exists between 1 and 8 such that the area of the triangle   does not exceed

, where  and . On the other hand . Since

, then   and we are done.  

     
Problem 29. A 4 х 4 chess board is covered by 13 domino plates with dimensions 1 х 2 
in a way that each of the two halves of a domino plate covers exactly one field of the 
chess board. Prove that one of the domino plates could be removed while the chess 
board would remain still covered.  
Solution: There are two cases of placing the domino plates. If one of the 13 domino 
plates is such that its two halves are overlapped by the halves of other domino plates, 
then it could be removed obviously and we are done. In the second case the contrary 
situation is present, i.e. at least one half of each domino plate is not overlapped by the 
half of any other domino plate. Consequently there are 13 halves which cover fields of 
the chess board and are not overlapped by other halves. In this manner the covered 
fields are exactly 13. The remaining 3 fields (4 х 4 – 13 = 3) are covered by the other 13 
halves. It follows by the Dirichlet principle that one of these 3 fields is covered by 5 
halves at least, i.e. at least 5 domino plates participate in the covering of the field under 
consideration. At the same time each field could be covered by domino plates in 4 
different ways: the free half of the domino plate is to the right, to the left, upwards or 
downwards. Thus, at least 2 domino plates overlap fully and one of them could be 
removed.   

 
Problem 30. The plane is divided into unit squares (in this case we say that an integer 
net is defined on the plane). The vertices of the unit squares are called knots. Prove that 
for any 5 knots there exist 2 of them such that the middle of the segment between them 
is a knot, too.    
Solution: Consider the coordinates of the 5 knots. All of them are integers and their 
remainders modulo 2 are equal to 0 or 1. It follows that there are 4 possibilities for the 
remainders of the 5 knots: (0,0), (0,1), (1,0) and (1,1). The Dirichlet principle implies that 
at least 2 knots M = (a,b) and N = (c,d) coincide modulo 2, i.e. the integers a and c, as 
well as the integers b and d, have the same remainders modulo 2. It follows that the 

numbers  and  are integer. Consequently the middle  of the 

segment MN is a knot.   
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Problem 31. Given 2 equal 16-gons and 7 vertices are coloured in red for each of them. 
Prove that the 16-gons could be overlapped in such way that at least 4 red vertices of 
the first 16-gon coincide with 4 red vertices of the other. 
Solution: Overlapping the 16-gons in a way that each vertex of one of the 16-gons 
coincides with a vertex of the other, there exist 16 different rotations (the full rotation 
included) of one of the 16-gons keeping the property of vertex coincidence. If after each 
rotation the number of the pairs of coinciding red vertices is equal to 3 at most, then all 
pairs are 16 х 3 = 48 at most.  On the other hand the number of the possible pairs is 
equal to 7 х 7 = 49. It follows that there is a rotation after which the number of the pairs 
of coinciding red vertices is 4 at least. 
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MATHEMATICAL GAMES 
 

Svetoslav Bilchev, Emiliya Velikova 
UNION OF BULGARIAN MATHEMATICIANS 

 
 

        Section 1. MATHEMATICAL JOKES 
 

  In the following mathematical games – mathematical jokes the final result depends only on 

the initial conditions of the game but not on the strategies of the players. 

 

  1.1. Problem.  Let m points are given in the plane. Two players consequently 
connect any two disjoint points with an arc no intersecting any other already existing arc. 
The winner is the player who takes the last move. 

Solution. If  2m ,  the first player is the winner.  

               Let  2m . In this case we have to use the following:  

Euler’s Theorem. Let m points are given in the plane and n pairs nonintersecting arcs 

connecting some two points and not passing through the remaining 2m  points. Let 

the so given plane is divided into l  regions. If from any point is possible to go to any 

other point along the given arcs it follows   2 lnm .  

At the end of the game ( 2m ) we obtain a map every two vertexes of which are 

connected by the chain of arcs. Every side of the map is bounded by three arcs, i.e. 

ln 32  .  From the Euler’s theorem it follows that the number  n  of the arcs in such 

map is equal to  23 m . But the number of the arcs on the map is equal to the number 

of the moves in the game. 

Thus, if m is an odd (even) number and  2m  the winner is the first (second) player. 

 
 

Section 2. SYMMETRY 

Here we consider mathematical games in which the winner takes fundamentally 
using of idea of symmetry. 

  

2.1.  Problem.  In a heap there are 1992 stones. Two players take part in the 

following game: everyone from them for one move can take any amount of the stones 

which is a devisor of the amount of the stones which was taken by the previous player’s 

move. The first move of the player can be any amount of the stones but not all of them. 

The winner is the player who takes the last stone. 

Solution. The winner is the first player. He takes 8 stones in his first move and the heap 

remains with 31641984   stones. After that the first player repeats every move of 
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the second player. The second player has the right to take only 1, 2, 4 or 8 stones. At 

the same time 16 divides 1984. Then the number of the moves will be exactly even 

number (without the first move). Hence, the first player will take the last move. 

 

2.2.  Problem.  On a circle  n  points numbered by  n,...,,21   are given. Two 

players consequently joint with a horde any pair points with the same parity. Every horde 

has not any common point (even the edge point) with the existing already hordes. The 

looser is the player who has not any further move. 

Solution.  The second player is the winner if  24  kn . The first player is the winner 

in all other cases.  

Let us consider that the given points are the vertices of a regular n–gon. 

Case 1.  Let kn 4 . The first player creates a diameter of the circle with his first 

move and after that on every move of the second player he answers with a symmetric 

move with respect to this diameter.     

Case 2.  Let 24  kn . Then the second player on every move of the first player 

answers with the symmetric horde with respect to the centre of the circle. The main point 

here is that the diametrically opposite points have different parity.   

Case 3.  Let 14  kn . Then on the circle there are two next odd points 

numbered by  1  and  n . With the first move the first player connects the points 

numbered by  1  and 3 and so he transforms the given game to the same game but with 

  214  kn  in which the started player is the looser. 

Case 4.  Let 34  kn . With the first move the first player connects the points 

numbered by 12 k  and  32 k . Then if we try mentally move the remaining 14 k  
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points so that they form a regular  14 k –gon the diametrically opposite points will be 

with opposite parity and the second player is the looser in this game. 

 

        2.3. Problem. A field with  nm   unit squares is given. For one move any of two 

players have possibility to paint any unit square. It is not allowed to paint more than two 
unit squares in any combination of four squares lying on the crossing of any two rows 
and any two columns. The looser is the player who has not more moves. Who will win in 

a right play? Consider the following examples of fields: i) 64  ; ii) 55 ;  iii)  74 ;  

iv) nm  .  

        Hint. In the case ii) and in any other case when m and n are odd numbers the 
winner is the first player. He has to follow the symmetrical strategy: at the beginning he 
paints the central square and after that he paints the central symmetrical square to this 
square which has been painted from the second player before. When on the field there 
is at least one “even” side it is necessary to rotate the field to have even number of rows. 
On every move of the first player the second player has to answer by painting another 
square on the same column. Two rows where the players are painting now are closed. 
The first player has to paint further in a new column, second player answers with 
painting a square in the same column and after that two more rows are closed. But the 
number of the rows is even and soon the first player will finish his moves. The winner is 
the second player.  
 

Section 3. GAMES WITH POLYNOMIALS 

 

For this type of games is characteristic some special choice of coefficients of the 
polynomials for obtaining the necessary conditions of their roots. For this purpose is 
necessary to use the following theorem. 

Theorem. If the function  xf  is continuous on the interval  b,a  and 

    0bf.af  then the point  c   exists such that   0cf . 

 
 

 3.1. Problem.  On the blackboard is written the equation 
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                    032
2

1
3  axaxaxxf  . 

Two players play the following game – the first one puts some real number instead of 
one of the coefficients of the equation, the second one do the same with the other of the 
coefficients. At the end the first player changes the last coefficient in the same manner. 
The first player is the winner if the equation has three different real roots. In any other 
case the winner is the second player. 

Solution. The first player can win the game with the following strategy. He takes the first 

move with changing of the coefficient  2a  so that  01 2  a . Further on after the 

second player’s move the first player takes the last remaining  coefficient such that  

031  aa  . Then  

                                          011 321  aaaf   and 

                                       011 321  aaaf  . 

By using The Theorem we conclude that the function  xf  has three real roots 

respectively on the intervals        ,,,,, 1111  . 

 

3.2. Problem.  On the blackboard is written the equation   

                            02  xx    

every star in which means some real coefficient. Two players are playing the following 
game. The first player takes any three real numbers and the second player puts them 
instead of the stars as he wants. The first player is the winner if the so obtained equation 
has two different rational roots. 

Solution. The first player is always the winner if he takes three different integers a, b, c   

as coefficients such that  0 cba  . Then the equation will have the roots:  

a

c
x,x  21 1 , )ac(  . 

 

3.3. Problem.  On the blackboard is written the equation: 

                        032
2

1
3  axaxaxxf . 

Two players consequently change the coefficients with integers not equal to zero. The 

first player is the winner if  xf  has at least two different integer roots. The second 

player is the winner in any other case. 

Solution. The winner is the first player with first move 12 a  and with second move 

(third move in the game) - the opposite number of the second player’s number. So the 

function  xf  can be expressed in the two following ways: 

                           1223  xaxaxaxx    or 

                           1223  xaxaxaxx . 

Hence so obtained function  xf   has two different integer roots:  1   and  1  . 

3.4. Problem.  The equation  
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  043
2

2
3

1
4  axaxaxaxxf   

is given. The game is the following: the first player puts instead of one of the coefficients 
any non zero integer and then the second player chooses for the other three coefficients 

some non zero integers. If  xf  has at least two different integer roots the winner is the 

second player. In any other case the winner is the first player. 

Solution.  The winner is the first player if he takes   14 a . Then the equation 

                         013
2

2
3

1
4  xaxaxax   

can have integer roots only equal to  (+1)  or  (-1). But if they are roots of   xf  then 

                        0321  aaa  and    

                     0321  aaa  , 

from where  02 a   which is impossible by the rules of the game. 

 

3.5. Problem.  On the blackboard is written the equation 

                          023  xxxxf . 

The first player says some real number and the second player puts this number instead 
of any star. After that the first player offer another real number which the second player 
puts instead one of the two remaining stars. At the end the first player puts any real 
number instead of the last star. The first player is the winner if the so obtained equation 
has three different integer roots. In any other case the winner is the second player. 

Solution. The winner is the first player. His first number has to be 0.  
Case 1. If the second player puts 0 instead of the last star then 

  xxxxf  23
 . After that the first player chooses the number  2  and at the 

end – the number: -3 . Then 

                               21  xxxxf   or 

                               31  xxxxf  . 

Case 2. If the second player puts 0 instead of the first star it follows 

  cbxxxf  3
. Then the first player says the number:  2543 ... . If the second 

player puts this number instead of  b , then , and if instead of   c , the first player 

puts  
222222 545343 b . Hence respectively 

                              543543 ..x..xxxf     and 

                               222 543  xxxxf . 

Case 3. If the second player puts 0 on the second star it follows 

  caxxxf  23
. Now the first player says the number: 

3276  and after that he 

puts  
27a   or   

6876c . Hence respectively 

                     767372 .x.x.xxf      and 

                    232222 76763762  x.x.xxf   . 

0c
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3.6. Problem.  Two players consequently change the coefficients of the  

polynomial    1000
1000

2
210 xa...xaxaaxP    with integers. The winner is 

the first player if the obtained polynomial has one and the same reminder after dividing it 
by 6 for every integer x. In any other case the winner is the second player. 

Solution. Let we note that for every integer  k  the number 6 divides the numbers    

   113  kkkkk   and     1124  kkk.kkk  . Therefore for dividing 

of the polynomial  

                                432 dxcxbxaxxQ    

by   6   for every integer  k   is sufficient to be done 

                                           0 ca    and    0 db  . 

Let we unite in the polynomial  xP  the terms from the first power till to the fourth 

power, from the fifth power till to the eighth power and so on.  At the end we obtain 

                              






249

0

4
0

k

k

k
k xfxaxP  , 

somewhere the functions  xfk  have the same structure as  xQ . 

So the first player can take the following strategy: to put  0a  equal to the desired 

reminder and after that on every choosing the coefficient from  xfk  of the second 

player the first player answers with choosing the coefficient so that to fulfill one of the 

correspondent equalities: 0 ca   and   0 db . 

Hence the obtained polynomial   xP  with integer coefficients will have the chosen 

reminder 0a  on every integer x  after dividing it by   6. 

 

3.7. Problem.  The polynomial 

                   128910  x*x*.....x*x*xxP  

is given. Two players consequently change the stars of the polynomial with integers (in 
general - 9 moves). The winner is the first player if the obtained polynomial has not real 
roots. If the polynomial has at least one real root the winner is the second player. Is it 
possible the second player to be the winner in any play of the first player? 

Solution. The answer is: Yes, he has a winning strategy in any play of the first player!  

It is necessary to change 9 stars – 5 ahead of the odd powers and 4 ahead of the even 
powers. If the first player changes a star ahead of an even (odd) power with some 
coefficient then the second player has to change a star ahead of an odd (even) power 

with some coefficient. So after seven moves two stars remains ahead of the powers  
kx   

and  
lx  , where at least one the numbers  k  and  l  is an odd number and the second 

player is on a move. Let after seven moves we have    
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                                   lk xxxQxP    . 

There are two cases: 

        i)  k  -  even number,  l  -  odd number. Then: 

                .QQPP,QP,QP  211111111

The second player has to choose      11
2

1
 QQ  . Therefore independently 

of the last move of the first player we will have:     011  PP . Hence, or 

    011  PP  and the polynomial   xP  has even two real roots:  (+1)  and  (-1), 

either     11  PP , i.e.      011 P.P  and the polynomial   xP  will have at 

least one real root on the interval   11, , (see the figure at the beginning of this part). 

        ii)  k  and  l  -  odd numbers. Then: 

        lk ..QP,QP 222211   , 

from where:              .QQ.PP. lkll 22212212  . 

The second player has to choose   
   

lk

l QQ.

22

212




   .  Therefore independently 

of the last move of the first player we will have:      0212  PP.l  .  Hence, or    

    021  PP    and the polynomial   xP   has even two real roots:  (-1)  and  

(+2), either     ,PP.l 212   i.e.      021  P.P   and the polynomial   xP  will 

have at least one real root on the interval   21, , (see the figure at the beginning of 

this part). 
 

Section 4. MINIMAX 

In this part we will consider games in which the payoff of every player is variable 
with different number values dependent from the moves of the players and every player 
want to increase his payoff.  

The games will be with two players which sum of the payoffs is a constant value 
independent from the players. The interests of the players are directly opposite because 
when the payoff of one of the players increases then the payoff of the second player 
decreases. 

 

4.1. Problem. A boy and a girl divide among each other 10 suits on the following 
way: the boy divides the suits on two heaps and the girl takes one of them. How many 
suits are possible to be taken by the boy and the girl? 

Solution. Everyone will take exactly 5 suits. Really, the boy will not divide the heap on 
different number of suits because the girl will take the biggest part. Then the boy makes 
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as smaller as is possible the maximal payoff of the girl. Such kind of strategy we name 
“minimax” strategy. 
 

4.2. Problem. The numbers 20321 ,...,,,  are written on the blackboard. Two 

players consequently put ahead of every number the sign    or the sign   . The sign 

is possible to put ahead of every free number. The first player wants to obtain at the end 
the smallest by module sum but the second one wants to make this sum as bigger as it 
is possible. What value can obtain the second player? 

Solution. The biggest sum for the second player is 30.  
Let us consider the strategy of the second player for obtaining the biggest sum. We 

divide the numbers on ten pairs:      20194321 ,,...,,,,  .  

The first player on every his move wants to put the sign    ahead of the biggest of the 

numbers in every pair, the second player will answer with the opposite sign ahead of the 
second number of the pair. 
Only in the case when the first player puts some sign ahead of  the number from the last 
pair then the second player have to put the same sign ahead of the second number of 
this pair. 
It is evident that the module of the so obtained sum is not less than 

                      301112019  ... . 

Now we will prove that the first player have possibility to bound the second player’s sum 
on not more than 30. He has to put ahead of the biggest of the remaining numbers the 
opposite sign of the sign of the sum for those moment (if the sum is equal to zero the 

first player puts the sign   ). 

Let us consider an example of the game and let the k-move is the last one move when 
the sum changes its sign (including the moves when the sum is equal to zero). For the 

first 1k  moves obviously the numbers   120181920  k,...,,,  have been used. 

Then the maximal by module sum which is possible to be obtained after the k-move is 
equal to 

                          kkk 24120120  . 

For everyone of the following k10  moves the sum goes done at least with 1 because 

the first player every time subtracts from the module of the sum the biggest of the 

remaining numbers m  but the second player can add to it not more than 1m . Hence, 

the final result can be not more than  

                          303110241  kkk  . 
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Section 5. WINING STRATEGIES  
 
In every game given below one of the players has winning strategy. 

5.1. Problem. Let we have a table with dimension 33  and 9 cards of unit 

dimension. On every card is written one of the numbers:   

                                      921 a...aa  . 

Two players consequently put one of non used cards on a free cage of the table. After 
using of all cards the first player adds the six numbers on the cards lying on the upper 
and on the down rows of the table and the second player adds the six numbers of the 
cards lying on the left and on right columns. The winner is the player with the biggest 
sum. 
Solution.  The winner is the first player or the game is equal.  

If  8291 aaaa   the first player puts  9a   on the cage 1 and for the second 

move he puts   2a   or  1a   on one of the cages 2 or 3. 

If  8291 aaaa   the first player puts 1a   on the cage 2 and for the second 

move he puts   9a    or  8a   on one of the cages 1 or 4. 

If  8291 aaaa   the first player can use one of the given up strategies. 

 

   1  
   2    3 

   4  
 

5.2. Problem. A convex polyhedron with 5n  faces is given. From every vertex 

of this polyhedron exactly three edges erected. Two players consequently draw its 
names on one of the free faces. The winner is those of the players who first is drawing 
his name on three faces passing through one vertex. 
Solution.  The winner is the first player. 
It is necessary to prove at the beginning that there exists a face which is not a triangle. 

Let all faces are triangles. Then the polyhedron has 
2

3n
 edges because three edges 

erected from every vertex and every edge belongs at the same time to two vertexes. By 

using the Euler’s Theorem  2 EFV  we obtain 2
2

3


n
nn , i.e. 4n , 

which is in a contradiction with the conditions of the game. 

So we have a face, let us call it 1A , which is not a triangle. The first player have to put 

his name on 1A . With the second own move the first player has to use the face 2A  , 

next to the face 1A  , which has common edges with two free faces 3A   and  4A   lying 

next to the face 1A  as well (it is possible because the second player can use only one 

face next to the face 1A ). At the end with the third own move the first player can use one 

of the faces 3A   or  4A  which is not used by the second player. So the winner is the 

first player. 
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Section 6.  THEORY OF NUMBERS 
 

6.1. Problem. Two players consequently write one p2 -digits number by using the 

digits 1, 2, 3, 4, 5. The first player writes the first digit, the second player writes the 
second digit, the first player writes the third digit and so on…. If the obtained number is 
divisible by 9 the winner is the second player. In the opposite case the winner is the first 
player. 

Solution.  Let the first player writes the digits - pa,...,a,a 21 , the second one – the 

digits  -  pb,...,b,b 21    and   pp b...bba...aaS  2121 . 

Case 1. If mp 3  the second player is the winner with the strategy: ii ab  6 , 

then the sum 

                  mpba...babaS pp 1862211    

is divisible by 9, i.e. the obtained number is divisible by 9. 

Case 2.  If 13  mp  or  23  mp  the first player is the winner with the 

strategy: 31 a  and after that 16  ii ba , then the sum 

             pppp bpbba...babaaS   163123121   

If 13  mp  then the sum  pbmS  318  is not divisible by 9 because pb3  

is between 4 and 8. 

Analogically, for 23  mp , then the sum pbmS  918  is not divisible by 9  

because  pb  is between 1 and 5. 

6.2. Problem. Two players write consequently some p2 -digits number by using 

only the digits 6, 7, 8, 9. The first player writes the first digit, the second player writes the 
second digit, the first player writes the third digit and so on…. If the obtained number is 
divisible by 9 the winner is the second player. In the opposite case the winner is the first 
player. 

Solution.  

Case 1. If np 3 , the second player is the winner. After every move of the first 

player the second player writes a digit which sum with the last written by the first player 
digit gives the reminder 6 after dividing it by 9 (after 6 the second player writes 9, after 

87  , after 78 , after 69  . 

Case 2. Let 13  np . The winner is the first player. The first his move has to be 

any digit without 9. Further after every move of the second player the first player writes a 
digit which sum with the last written by the second player digit gives the reminder 6 after 
dividing it by 9. After such strategy of the first player the sum of all digits without the first 
and the last ones is divisible by 9. But the first digit is different from 9 and, hence, the 
sum of all digits is not divisible by 9.  

Case 3. If 23  np  the first player is the winner with the following strategy: the 

first move of the first player is the digit 9. Then on every move of the second player 
without of the last one the first player answered on the same manner as in the Case 2. If 
the second player’s move which is before the last one is a digit not equal to 9 then the 
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first player puts immediately after that the digit 9. With this strategy the sum of all digits 
without the first one and the last three digits is divisible by 9. Among those 
“extraordinary” four digits there is at least one which is different from 9. Hence, the sum 
of those four digits is not divisible by 9 and then the same is with the sum of all digits. 
 

6.3. Problem.  Several players sitting at a round table are numbered clockwise. 
The first one has one euro more than the second, the second one has one euro more 
than the third, and so on every player has one euro more than the next one. The first 
player gives one euro to the second player, the second gives two euro to the third player 
and so on every player gives one euro more than he has received. The game continues 
until it is possible. At the end of the game it turns out that one of the players has money 
4 times as much as one of his neighbors. How many are the players and how much 
money had the “poorest” of them at the beginning? 

Solution.  Let n  be the number of the players and let the “poorest” of them  

(for example, the thn   player ) has x  euro at the beginning. From the rules of the 

game after the first “round” the players have (according to their numbering) 

                   11322  x,x,x,...,nx,nx    euro. 

Hence the game continues x  “rounds” until the last thn   player finishes his x  euro. 

Then at the end the players have respectively  

                   0123211 ,,,...,n,n,nxx      euro. 

Since   2210 n,...,,,   are consecutive natural numbers then only the first 

player can have money 4 times as much as his neighbor. But his neighbors are the 

nd2  player and the thn   player. Since the last player has 0 euro at the end of the 

game then from the conditions we get the equation 

                     
nn

n
x.e.i,nnxx

7
3

73
2411 


   . 

Therefore  n   divides  7  and it can be only  1  or  7 . But when  1n  we get  0x  

which is impossible. Hence  7n  and  ,x 2  i.e.  7  players are around the table and 

the “poorest” of them has  2  euro at the beginning. 

        Remark. The above arguments were done under the assumption that 0x , but 

one can easily see that if  0x  the situation described in the problem statement would 

not be possible. 
 

        6.4. Problem. A number of k motorcyclists,  1k , have to travel from A  to B . 

The first day the motorcyclist iM ,  k,...,,i 21 , covered 

in

1
 of the whole distance, 

where in  is some positive integer. The second day he covered 

im

1
 of the remaining 

distance, where im  is some positive integer. The third day he covered  

in

1
  of the 

distance left after the second day, the fourth day he covered 

im

1
 of the way left after the 
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third day. The pairs  ii n,m  and  jj n,m  of natural integers are different if 

 k,...,,j,i,ji 21 . At the end of the fourth day it turns out that every motorcyclist  

iM  covered exactly 
4

3
 of the distance between A   and  B . 

        i)  Find the biggest possible positive integer k ; 

        ii) Which motorcyclist iM  will be the winner in a race with the above given 

conditions if the product  iinm  of his numbers ii n,m  have to be possible the biggest 

one? 

        Solution.  Let  S  denote the distance between  A   and  B . The first day the 

motorcyclist  iM  covered  S
ni

1
 and the remaining distance was   

                                     S
n

S
n

S
ii










1
1

1
  . 

The second day he covered  S
nm ii










1
1

1
  and the remaining distance was 

                      S
mn

S
nm

S
n iiiii






































1
1

1
1

1
1

11
1  . 

Similarly we find out that after the fourth day the remaining distance was 

                                    S
mn ii

22
1

1
1

1 
















   . 

Thus we get the following equation 

      

 SS
mn ii 4

11
1

1
1

22


















  , i.e.    

  
0

2

111
22

















 

ii

ii

nm

nm
, from where 

                        
  













2

1

2

111
or

nm

nm

ii

ii
 . 

Since   11  ii n,m  then it follows 

               
  

2

111




ii

ii

nm

nm
, i.e.     

2

2
2




i
i

n
m   . 

But  im  is an integer then  2in  must divide 2. And using that  in  is a positive 

integers we get that in  is either  3  or  4. Then im  is either  4  or  3  respectively. 

Hence, we obtain only two solutions: the motorcyclist 1M  with    4311 ,n,m    and 

the motorcyclist 2M  with     3422 ,n,m  . Thus  
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        i)       the biggest possible positive integer k  is  2k  .  

        ii) we have not a winner in such race because                          

1234432211  ..nmnm  . 

 

        6.5. Problem. The numbers  27321 ,...,,,  are given. Two players consequently 

cross out a number while two numbers remain. If their sum is divisible by 5 the winner is 
the first player. In other case – the winner is the second player. Who will be the winner in 
a right play? 

        Hint.  It will be more convenient to consider not the given numbers but their 
reminders with respect to 5. Those reminders are: 5 zeros, 5 fours, 5 threes, 6 units and 
6 twos. The first player is the winner.  The first move of the first player is to cross out the 
number 1.  After that he has to cross out such reminders which sum with the 
corresponding crossing reminders from the second player is equal to 5. More precisely:  
i) if the moves of the second player are 1, 2, 3, 4 then the first player moves are 4, 3, 2, 
1; ii) if the move of the second player is 0 then the first player move is 2 and after that on 
every move 0 of the second player he will answer with move 0. Using this strategy at the 
end two reminders will remain:  0, 0 or 2, 3 or 1, 4. 
 

        6.6. Problem. On a circle n  boxes are given. One of the boxes is full with two 

stones – white and black. The other boxes are empty. Two players consequently move 
the stones – the first moves clockwise the white stone through one or two boxes, the 
second moves the black stone on the opposite side through one or two boxes as well. 
The winner is this player who puts his stone into the box with the stone of the other 

player. Who will be the winner in a right play? Consider the cases: i) 13n ;  ii) 14n ;  

iii) 15n ;  iv) n  is any natural number. 

        Hint. It is necessary to point that: a) if four empty boxes are between the stones this 
is “a trap” – the player who has to move is the looser; b) if three empty boxes are 
between the stones this is “a pass” – the stones will pass on the following move through 

each other without “fighting”. Use  432105 ,,,,s,skn  . 

 

        6.7. Problem. The price of a good is  n  euro. Two directors of stores are playing. 

Every one of them with his own move increases the price of the good with %m  , where 

m  is a natural number,  1001,m , and at the same time with integer number of euro. 

The looser is the player which has not any more moves in some moment. Which of the 

directors is the looser? Consider the following cases: i) 1000n ;  ii) 880n ;  iii) 

600n ; iv) 
kn 2 ; v) n  is any natural number. 

        Answer. The winner is the second player if 
sk ..mn 52 , where  

p),,,,q(,qpm 973110    is any natural number,  and  3  divides  the 

natural numbers  k   and  s . In all other cases the winner is the first player. 
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Section 7. APPENDIX 

        7.1.  Problem.  A kangaroo is jumping within the angle  00  y,x  of the 

coordinate plane Oxy  in the following way: from the point   y,x   the kangaroo can 

jump to the point   11  y,x   or to the point  75  y,x  but it is impossible for 

the kangaroo to jump to the points a coordinate of which is negative. From which initial 

points  y,x   the kangaroo can not get into the point which distance from the centre  O  

of the coordinate plane  Oxy   is more than  1000  units. Draw the set  T  of the all such 

points   y,x   and compute the area  F  of the set  T . 

        Answer. 15F  . The set   y,xT  is:  the column-like triangle without the all 

points on the “staircase”:    

 

    },y,x,yx{)},,,,k,kyk,kx(\

\);,,,,k,ky,kx{(y,xT

0045432165

104321050





where   x   is the bracket function, i.e. in the above considered case if  ,...nx   is a 

nonnegative decimal number, then   nx  is a natural number. 

        7.2.  Problem.  An automat is working on the following way: after putting inside  5  
cents the automat products by  3   the given to it number and after putting inside  2 cents 
the automat adds  4  to the given to it number.  

        i)   What minimal sum of cents is necessary to use for obtaining the number  

1979n  from the number   1   with the help of the given automat?  

        ii)  What is the minimal sum of cents if  2005n ? 

        Hint.  It is necessary to think inversely – from  n   to   1 !  

i) The minimal necessary sum of cents is:  265537 ..   . See the series 

    

151519236973219657197119751979     

               7.3 Problem.  Choose  
n2   different natural numbers between the numbers  1 and 

n3  inclusively so that the average value of every two chosen numbers is not within the set 

of the chosen numbers.  

        Hint.  Use the mathematical induction on  n  . The set of choosing numbers is: 
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,.aa,a...,,a,a,a,a n
nn

1
11224321 328721 11




   

1
22

1
222

3232 11



 

nn .aa...,,.aa nnn   . 
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GEOMETRY IN THE PLANE 
 

Emiliya Velikova, Svetoslav Bilchev 
UNION OF BULGARIAN MATHEMATICIANS 

 
 
Section 1. INTRODUCTION 
 

This chapter offers several general methods for solving problems in plane geometry and 
is designed for leading teachers of mathematics and their talented students. 
The chapter consists of twelve sections: introduction, triangle, polygons, circles, extreme 
problems, loci, construction problems, transformations (rotation, similarity and inversion), 
special theorems, metric problems, geometric inequalities, applications of vectors in 
geometry. 
All sections include material which starts from topics covered at the ordinary school 
curriculum but continues beyond – for example several problems are solved by using of 
complex numbers, vectors, transformations, algebraic and geometric inequalities etc. 
Almost all of the 41 given problems are with full solutions. 

 
 
Section 2. TRIANGLE 

 
Problem 2.1.  Find three distinct isosceles triangles with integer sides such that each 
triangle’s area is numerically equal to six times its perimeter. 
 

Solution. Let the sides of such a triangle be  a,b,b . Then six times the perimeter of 

the triangle is equal to  6 12a b  and the area of the triangle, by the Heron’s formula, is 

equal to  
2 2 2 2

a a a a
b b
    

     
    

 . It follows that 

  6 12a b = 
2 2 2 2

a a a a
b b
    

     
    

 ,   

  

2 2

144
2 2 2 2

a a a a
b b b
      

         
      

  , 

  

2 2
2

144
2 2 2 2 24

a a a b a a
b b ,  

b a

       
          

       
 . 

Trying multiples of 24 for a  leads to the following three solutions: 48 40a , b  ;  

72 45a , b  ; 120 65a , b  . These have areas of 972, 768 and 1500, 

respectively, all of which are six times their perimeters. 
 

Problem 2.2.  Let G  be the centroid of a triangle ABC  and let D  be the midpoint of 

side BC . Suppose triangle BDG   is equilateral with side length 1 . Determine the 

lengths of the sides AB, BC, CA  of ABC . 
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Solution. Side BC : The point D  is the midpoint of side BC , so 1DC   and 2BC   

. 

Side AB : The point G  is the centroid of the triangle ABC , so 2AG GD  and so  

2 3AG , AD  . The triangle BDG  is an equilateral triangle, so
060GDB  . Then, 

by the Law of Cosines for the triangle ABD ,  

  2 2 2 2 2 1
2 1 3 2 1 3 7

2
AB AD BD AD BD cos GDB             , 

hence 7AB  . 

Side AC : Angles GDC  and GDB  are supplementary, so 
0120GDC  . Then, 

by the Law of Cosines for the triangle ACD , 

  2 2 2 2 2 1
2 1 3 2 1 3 13

2
AC AD CD AD CD cos GDC

 
              

 
, 

or 13AC  . 

 
Problem 2.3.  Two circles with equal radius can fit tightly inside a right angled triangle 

ABC , which has sides 13 12 5AB , BC , CA   , in the three positions illustrated 

below. Determine the radii of the circles in each case. 

                          
                            Case 1                                                    Case 2 

                                        
                                                        Case 3 

Answer.  Case 1.  
3

2
;  Case 2.  

10

9
;  Case 3.  

26

17
. 
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Problem 2.4.  Let P  be a point on side BC  of a triangle ABC .  A line through P  

parallel to AB  cuts AC  at E , and a line through P  parallel to AC  cuts AB  at F . If 

the area of triangle ABC  is equal to 1, prove that the area of one of BPF, CPE  and 

AEPF  is not less than 
4

9
 . 

 

Solution. Let  1 0 1BC , BP r ,  . Then 
21 BPFCP r, F r    ( BPFF - denotes the 

area of the triangle BPF) and  
2

1-CPEF r  .   

If  
2

3
r   , then  

2 4

9
BPFF r   .  If  

1

3
r   ,   then    

2 4
1

9
CPEF r     .   

Finally, suppose  
1 2

3 3
r ,

 
 
 

. Then  
22 21 1 2 2AEPFF r r r r       . 

The obtained function is a parabola which opens downwards, so that it’s minimum value 

is at one of the end points. If 
1

3
r   or 

2

3
r   , then 

2 4
2 2

9
AEPFF r r   . 

Hence, 
4

9
AEPFF  , or the area of one of the triangles BPF, CPE  and AEPF  is not 

less than 
4

9
. 

 

Problem 2.5.  A triangle ABC  with sides 12 13 15AB , BC , CA    is given. A 

point M  on the side AC  is such that the radii of the circles inscribed in the triangles 

ABM  and BCM  are equal. Find the ratio AM : MC . 

 

Solution.  Let AM : MC k . If the radii of the circles inscribed in the triangles ABM  

and BCM  are equal then the ratio k  of their areas is equal to the ratio of their 

perimeters.  
Hence,  

  
13 12

1

k
BM

k





. 

In particular, it follows from this equality that  

12
1

13
k  . 

Write down now the laws of cosine for triangles ABM  and BCM  (with respect to the 

angles BMA and BMC ). After that eliminate the cosines of the angles from those 

equations. We obtain the following equation for k :  
3 269 112 44 0k k k    

with roots 
2

0
3

,   and 
22

23
 .  
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Finally, we get 
22

23
k   taking into account the limitations for k  .  

Remark: It is also possible to apply Steward’s Great Theorem:   

  

2 2
2 CM AB AM BC

BM AM CM
AC

  
    

for obtaining the equation for k  . 

 

Problem 2.6.  Let ABC  be a triangle whose incenter is . Consider the circle Ω  

tangent to the sides CA,CB  respectively at D,E  and interior tangent to the 

circumcircle. Prove that   is the midpoint of the segment DE . 
 

Solution.  It is obvious that if we succeed in proving that  lies on the segment DE , 

then the problem is solved because triangle DCE  is isosceles, and  CI   is an angle 

bisector and hence a median of DCE .  

Let us denote by x,y  the lengths of the segments BE,AD , respectively. By Cauchy's 

theorem applied to the points A,B,C  and the circle Ω  we obtain 

   xb ya a x c   . 

But CE CD . Thus   a x b y   , i.e. y b a x    .  

Solving the above system we obtain: 

  
 a s b

x
s


   and   

 b s a
y

s


  , 

where s is the semi perimeter of the triangle ABC . 

The fact that    lies on DE  shows is equivalent, by the transversal theorem, to the 
equality 

  
BE AD C' I

AC' BC' AB
EC DC IC
      

where C' CI AB . 

We know from the bisector theorem that 

  
C' I c

IC a b



  

so the previous equality is equivalent to 

  

2cb x ca y c

b a a x a b b y a b
   

    
 ,  i.e.

bx ay
c

a x b y
 

 
 or 

  

 

 

 

 

a s b b s a
b a

s s c
a s b b s a

a b
s s

 
 

 
 

 

 or finally 

   ba s b ab s a
c

sa as ab sb bs ba

 
 

   
. 

 
But last equality is obviously true. 
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Problem 2.7.  Let ABC  be a triangle and M ,N  - the midpoints of sides BC,AC , 

respectively. If the orthocenter of the triangle ABC  and the centroid of the triangle 

AMN  coincide, determine the angles of the triangle ABC . 

 
Solution.  We will solve this problem by using complex numbers.  

Let us take the circumcenter O  of the triangle ABC  as the origin of the coordinate 

plane and denote by a,b,c  the complex numbers that are the affixes of the points 

A,B,C , respectively. 

The orthocenter of the triangle ABC  corresponds to the complex number 

  h a b c     . 

The centroid of the triangle AMN  corresponds to the complex number 

  
1 3 2

3 2 2 6

b c c a a b c
g a

    
    

 
. 

From g h  we get 3 5 4 0a b c   . Now, without loss of generality we may assume 

1a    and consequently 1b c   (since each is equal to the radius 1 of the circle).  

The previous equality becomes 3 5 4 0b c    and taking conjugates one also has  

  3 5 4 0b c     or  
5 4

3 0
b c

   .  

Solving for b  and c  the system given by the two equalities one obtains either 

  
3 4

5 5
c i, b i       or  

3 4

5 5
c i, b i     . 

The obtained triangles are congruent since they are symmetrical with respect to the real 
axis. By standard computation we obtain  

  3 2
4

B , tan A , tanC


   . 

 

Problem 2.8. A triangle ABC  with orthocenter H , circumcenter and circumradius R  is 

given. Let D,E,F  be the reflection of points A,B,C  along BC,CA,AB , respectively. 

Show that D,E,F  are collinear if and only of  2OH R . 

 

Solution.  Let G  be the centroid of the triangle ABC , and A',B',C'  be the midpoints 

of BC,CA,AB , respectively.  

Let A'' B'' C''  be the triangle for which A,B,C  are the midpoints of B'' C'',C'' A'', 

A'' B''  respectively. Then G  is the centroid and H  is the circumcenter of the triangle

A'' B'' C'' .  

Let D',E',F'  denote the projections of O  on the lines B'' C'',C'' A'',A'' B''  

respectively. Consider the similarity h  with center G  and ratio 
1

2
 . It maps 

A,B,C,A'',B'',C''  into A',B',C',A,B,C , respectively.  

Note that A' D' BC  which implies 
2

1

AD GA

A' D' GA'
   and DAG D' A' G . 
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We conclude that  h D D'  and, similarly,  h E E' ,  h F F' . Thus, D,E,F  

are collinear if and only if D',E',F'  are collinear. But, D',E',F' are the projections of 

O  on the sides B'' C'',C'' A'',A'' B''  respectively. By Simpson’s theorem, they are 

collinear if and only if O  lies on the circumcircle of the triangle A'' B'' C'' . Since the 

circumradius of A'' B'' C''  is 2R , the point O   lies on the circumcircle if and only if 

2OH R .  

 

Problem 2.9.  The medians  AD, BE, CF of the triangle  ABC  intersect at the point  

G . Six small triangles, each with a vertex at G , are formed. We draw the circles 

inscribed in the triangles  AFG, BDG, CDG . Prove that if these three circles all are 

congruent, then the triangle  ABC  is equilateral. 

 

Hint. From triangles BDG  and CDG  easily follows that BG CG , so BE CF  and 

hence  AB AC ,  i.e. c b . Then from the triangles AGF  and BGD , using the fact 

that they have equal areas, congruent inscribed circles and congruent medians 

a b c bm ,m ,m m   we can obtain: 

  
2 1 2 1

2 3 3 2 3 3

AGF BGD

a b b a

F F

b a
m m m m

 

   

, i.e.    3 2 b ab a m m   , 

This is equivalent to the following equation of third degree: 

  

2
1

1 0
2

b b

a a

   
     

   
  

and, because  of 2b c b a   , we obtain b a ,  i.e. a b c  . 

  
 

Section 3. POLYGONS 
 

Problem 3.1. Suppose that in a convex quadrilateral ABCD , the areas of the triangles 

ABD,BCD  and ABC  are in proportion 3 4 1: : . If a line through B  cuts AC  at M  

and  CD  at N  in such a way that AM : AC CN : CD , prove that M  and N  are 

the midpoints of AC  and CD  respectively. 

 

Solution.  Let  AM : AC CN : CD r   and  1ABCF  . Then 

  3 4ABD BCDF ,  F     and   3 4 1 6ACDF      (Figure 1). 

Hence  

  4ABM BCNF r, F r     and   6ACNF r  .   

Now, 

  1BCM ABC ABMF F F r      ,   5 1CNM BCN BCMF F F r         and 

  1AMN ACN CMNF F F r      . 

 From  
1

6

AMN

ACN

Fr AM
r

r F AC






    we obtain the quadratic equation  

    20 6 1 2 1 3 1r r r r      .  
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Since  0r  , we must have 
1

2
r  , which leads to the desired result. 

 
Figure 1 

 

Problem 3.2. Let ABCDEF  be an inscribed hexagon in which AB CD EF R   , 

where R  is the radius of the circumscribed circle and O  is its center. Prove that the 

points of pair wise intersections of the circles circumscribed about the triangles 

BOC, DOE, FOA distinct from the point O , form an equilateral triangle of side R . 

 

Solution. It is obvious that the triangles AOB, COD, EOF  are equilateral. Denote:  

  2 2 2BOC , DOE , FOA      .  

Let K,M ,L  be, respectively, the intersection points of the circles circumscribed about 

the triangles BOC  and AOF , BOC  and DOE , AOF  and DOE . The point K  lies 

inside the triangle AOB , and  

  
0 0 0180 90 90BKO BCO ,   AKO        and, since  

  
0

2 3
3 90

2


 

     , it follows that   
090AKB   . 

Similarly, L  lies inside the triangle FOE , and  

  
0 0 090 90 90OLF , OLE ,  FLE       . 

Because of the equilateral triangles AOB  and  DOF it follows that  OL AK  and   

 
02 2 90KOL KOA LOF KOA KAO AKO            . 

Thus, the triangles KOL,AKO  are congruent, that is, KL AO R  .  

Similarly, | LM | | MK | R  . 

 

Problem 3.3. Prove that the interior of a convex pentagon ABCDE  having all sides of 

equal length cannot be entirely covered by the open discs having the sides of the 
pentagon as diameters. 
 

Solution. Let us denote by 2R  the side length of ABCDE . It follows directly from the 

Pigeonhole Principle that there are two consecutive angles of the pentagon greater than 
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2 3 3

2 5 5 3

   
 


, i.e. greater than 

060 . Suppose that these angles are EAB, ABC

. It follows that BE  and AC  are greater than 2R . 

Let M be the midpoint of segment EC. The point M is on the semicircle of diameter DE 

and DC  DM CE , therefore it lies in their exterior. We shall prove that M also lies 

in the exterior of the semicircle of diameter AE. Indeed,  

  
2

AC
MF R  , 

where F is the midpoint of the segment AE. The same follows for the semicircle of 

diameter BC. 

All we have left to prove is that M is at the exterior of the semicircle of diameter AB. 

Suppose otherwise, which means that 
090AMB  . Then AB is the greatest side of 

the triangle AMB, thus 2AM R . But from 

   
1 1

2
2 2

EM EC ED DC R     

it follows that  2EA R EM  ,  EA AM , and thus 
060EMA  . 

In the same way 
060CMB   and therefore  

  
0 0180 210 EMA AMB CMB    , 

which is a contradiction.  

Problem 3.4. Let ABCDE  be a cyclic pentagon inscribed in a circle of center O and 

suppose that 

  
0 0 0 0120 120 130 100B ,  C ,  D ,  E    . 

Show that the diagonals BD and CE meet at a point belonging to the diameter AO. 

Solution. We shall use complex numbers. By standard computations we find that, on 
the circumscribed circle, the sides of the pentagon are supported by the following arcs: 

                
0 0 0 0 080 40 80 20 140arcAB , arcBC , arcCD , arcDE , arcEA     . 

It is then natural to consider all these measures as multiples of 
020  which corresponds 

to the 18th – primitive root of unity, say  

  
2 2

18 18
cos i sin

 
    . 

We thus assign, to each vertex, starting form 1A   the corresponding root of unity: 

  
111064  E,D,C,B . 

We shall use the following properties of  :    

  
k kor ; or          18 18 9 6 31 1 1 0 . 

We need to prove that the complex number corresponding to the common point of lines 

BD and CE (Figure 2) is in fact a real number.   

The equation of line BD is 
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(1)   

z z

  

 

4 4

10 10

1

1 0

1

 , 

and the equation of the line CE is 

(2)   

z z

  

 

6 6

11 11

1

1 0

1

 . 

 

 
    

Figure 2 
 

Equation (1) can be written as follows: 

       z z        14 8 4 10 12 6 0  

or        z z          8 6 4 6 6 61 1 1 0 . 

Using the properties of ω we derive at the following simplified version of (1): 

(3)  z z   4 2 0 . 

In the same way equation (2) becomes  

(4)    z z    3 4 1 0  . 

From (3) and (4) we obtain the following expression for z 

  z
      

    
   

7 3 2 6 2

4 6 5

1
1  . 

To prove that z is real, it will suffice to prove that it coincides with its conjugate. It is 
easy to see that 

  
 


 5 5

1 1
 

is equivalent to 

     4 5 4 5
, 

that is  
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     14 13 4 5
,  i.e.     10 9 1 ,        9 1 1 0  

which is true due to the relation    9 1. 

Problem 3.5. Let 1 2 nPP ...P  be a convex polygon in a plane. We assume that for any 

arbitrary choice of vertices i jP ,P  there exists a vertex of the polygon from which the 

segment i jPP    can be seen at an angle of 
060 . Show that 3n  . 

Solution. Let j kP ,P  be vertices such that the side j kP P  has minimal length and let iP  

be the vertex which satisfies the condition
060j i kP PP  . Then the triangle j i kP PP  is 

equilateral (Prove that!). Let us denote it by ABC  . 

In the same way, taking a side r sP P  of maximal length and the vertex tP  from which

060r t sP PP  , one obtains an equilateral triangle, denoted by 1 1 1A B C . We shall 

prove that 1 1AB A B . This ends the problem, because the polygon is convex and its 

vertices are in the domains A B CD ,D ,D  (Figure 3). 

  
Figure 3 

 
We distinguish the following two cases: 

Case 1. The triangles ABC  and 1 1 1A B C  have a common vertex. Say 1A A . 

Then 1B  and 1C  are not both in the domain AD  because in such a case  

0

1 1 1 60B AC  . Assume BDB 1 . Then the segments 1B B  and AC  have a common 

point E . The following inequality holds: 

  1 1AB BC AC BB    ,   

because   1 1AB AE B E   and BC BE CE   . 

It follows that 1 1AB BB , which contradicts the maximal length of 1 1 1AB A B . The 

conclusion is that 1B  is not in BD  nor in CD . Then 1B  is one of the points B or C. 

Case 2. The triangles ABC  and 1 1 1A B C  have no common vertex. If two of the 

points  1 1 1A ,B ,C  are in the same domain, say CA ,B D1 1  (Figure 4) if follows that  
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0

1 1 60B CA   and then  1 1 1 1max CB ,CA A B .  This is a contradiction. 

 

 
Figure 4 

 

If the points 1 1 1A ,B ,C  are in distinct domain A B CD ,D ,D  it follows that A,B,C  are 

exterior points of the triangle 1 1 1A B C , since the polygon is convex (Figure 5). 

 

 
Figure 5 

 

Because BC has minimal length, it follows that 
0

1 60BAC   and then 
0

1 1 1 60C A B  . 

This is a contradiction.  
We conclude that case 2 cannot occur. 

 
Section 4. CIRCLES 
 

Problem 4.1. Let AB  be the diameter of a semi-circle and T  a point on the extension 

of BA , with  
1

4
AT AB . Assume that a line  passes through T  and is per-

pendicular to AB  and that lines through two distinct points M  and N  on the semi-
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circle and perpendicular to  intersect it at P  and Q , respectively. If MP AM  and 

NQ AN , prove that AM AN AB  . 

 

Solution.  In Figure 6, we project M  and N  onto C  and D  on AB . Since the 

triangles  CAM  and MAB  are similar, we have 
2AM AC.AB . Similarly, 

2AN AD.AB . Hence 

     
    

    

2 2AB.CD AB AD AC AN AM AN AM AN AM

AN AM NQ MP AN AM .CD

       

    
 

or  AM AN AB   . 

 
Figure 6 

Problem 4.2. Suppose two circles  1 1C O  and  2 2C O  with distinct radii meet at 

points A and B and suppose that the tangent from A to 1C  intersects the tangent from B 

to 2C  at a point M. Show that both circles are seen from the point M by the same angle. 

Solution. We have to prove that 1 22 2O MA O BM   (Figure 7), which is equivalent 

to 

(5)  1 2O A O B

AM BM
 . 

 

 
Figure 7 
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Let  1 2O O  intersect  AB   in  C . The length of the common chord AB is equal to 

  AB  1 1 12 2O A sin AOC O A sin BAM        

and similarly 

  2 2 22 2AB O B sin BO C O B sin ABM        , 

hence 

(6)   
   

1 2
O A O B

sin ABM sin BAM
. 

By the Sine Theorem in the triangle ABM we derive that 

(7)   
   


MA MB

sin ABM sin BAM
. 

By dividing (6) and (7) we obtain (5), as desired. 

Problem 4.3. Suppose that three circles of a plane whose centers are the points 

A,B,C , respectively, are each tangent to a line Δ and pairwise externally tangent to 

one another. Prove that the triangle ABC  has an obtuse angle and find all possible 

values of this angle.  

Solution. Denote the radii of the three circles by a,b,c , respectively. Let also A',B',C'  

be the projections of the centers A,B,C  on the line Δ (Figure 8). Suppose    c a b .  

Then 

     
2 2

2    A' B' a b a b ab , 2B' C' bc , 2A' C' ac  . 

From the equality 

  A' B' A' C' C' B'   

it follows that 

  ab ac bc  , 

which is equivalent to the equality  

 
2

ab
c

a b





. 

  

 
 

Figure 8 
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From the Cosine Rule applied to the triangle ABC  we deduce that 

(8)  
 
  

  


 

c a b c ab
cosC

a c b c
. 

It is easy to see that C  is obtuse because of the following equivalences:  

     
2

0       cosC c a b c ab c a b  

  
22 2 4        a b c a b ab c ab c ab , 

which is obvious from    c a , c b  . 

The measure of C  is given by (8), which can be rewritten as 

  
  

2
1 

 

ab
cosC

a c b c
. 

Equivalently, we obtain  

(9)  
  

2

2

C ab
sin

a c b c


 
. 

Because 
2

C

   , it follows that 

4 2 2

C 
  . Hence, it is sufficient to find the 

maximum of the function 
2

2

C
sin , given by (9).  

The formula (9) can be written in the form 

  
2 1 1

2
1 1

C
sin

a c b c c c

a b a b

 
    

    
  

 

and the original problem reduces to finding the maximum of the product 

  1 1
c c

P
a b

  
    
  

. 

Denote 
c

x
a

 and 
c

y
b

.  

Then   2 21 1P x y   , with the supplementary conditions 1 0  x y , x,y . 

Using Calculus the problem is simple but we shall solve it by elementary methods. Set 
xy p . Then 

  
2 2 2 2 2 2 21 2 2 2 2         P x y x y xy x y p p , where    

  

2
1

2 4

 
   

 

x y
p xy .  

The quadratic function 
2 2 2  P p p  is a decreasing function on the interval 

1
0

4
,

 
 
 

. 

Hence, the function takes minimal value for 
1

4
p   and then 

25

16
P  .  
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The conclusion is that for x y  or a b  we obtain  
16

2
25

max C arcsin .  

Therefore, the possible values for C  are: 
16

2
2 25

 
 
 

C , arcsin . 

Problem 4.4.  Consider a triangle ABC  with circumcircle  k O  and a point D on the 

side BC. Let  1k L  be a circle tangent to  k O , AD and BD and let circle  2k L  be 

a circle tangent to  k O , AD and DC. Show that    1 2k K and k L  are tangent if 

and only if  

                                       BAD CAD . 

Solution. Let E be the intersection point of the line AD and the circle  k O  (Figure 9).  

 
 

Figure 9 

Let M and N be the tangent points of the circle  1k K  with BD and AD, respectively, 

and let  P and Q be the tangent points of the circle  2k L  with DC and AD, 

respectively as well.  

We apply the Cauchy's theorem for the circles B, C, E and  1k K , where the points 

B, C and E are considered as degenerate circles. In this way we obtain  

  BE CM CE BM BC EN     . 

By applying ones again the Cauchy's theorem for the circles B, C, E  and  2k L   we 

obtain 

  BE CP CE BP BC EQ     . 

The circles  1k K  and  2k L  are tangent if N and Q coincide, i.e. EN EQ . By the 

above relations, this condition is equivalent to  

       0     BE CM CP CE BP BM BE CE MP . 

It follows BE CE . This condition is equivalent to BAE CAE .  

P

N
L

K
Q

DM

A

CB

E

O
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Remark. This solution is very easy to apply for solving the next similar problem: 
 

Problem 4.5. The circles      1 2k O , k K , k L  are related to each other as follows: 

the circles 1 2k , k  are externally tangent to one another at a point N and both these 

circles are internally tangent to the circle k . Points A,B,C  are located on the circle k  

as follows: BC is a direct common tangent to the pair of circles 1 2k , k  and line NA is the 

transverse common tangent at N to 1 2k , k , with N and A lying on the same side of the 

line BC. Prove that N is the in center of the triangle ABC .  

 
 
Section 5. EXTREME PROBLEMS 

Problem 5.1. In a square of side 6 the points A,B,C,D  are given such that the 

distance between any two of the four points is at least 5. Prove that A,B,C,D  form a 

convex quadrilateral and its area is greater than 21.     

Solution. First of all we observe that no angle formed with three of the four points can 

be greater or equal to 
0120 , because otherwise if we suppose that  

0120ABC  , then 

from 5AB  and 5BC  we deduce 5 3 6 2 AC , which is a contradiction. 

Therefore if the quadrilateral ABCD  is not convex then one of the four points lies inside 

the triangle formed by the other three points. Suppose that  D int ABC . But then 

one of the angles ADB, BDC, CDA  would be, by the Pigeonhole principle, 

greater or equal to 
0120 , contradiction. Thus, ABCD  is a convex quadrilateral. 

Now because each angle of the triangle ABC  is smaller than 
0120  and there is at least 

one angle, say ABC , which is greater than 
060  it follows that   

3

2
sin ABC       

so that  

       
1 3 21

25
2 4 2

      ABCF AB BC sin ABC    (since 625 > 588 >12.49 ). 

Similarly one can prove that 
21

2
ACDF  , and thus 21ABCDF  . 

 

Problem 5.2. Two unit squares with parallel sides overlap by a rectangle of area 
1

8
. 

Find the extreme values of the distance between the centers of the squares.  
 

Solution. Let MNPQ be the rectangle at the intersection of the unit squares with 

centers A and B (Figure 10). Set MN x,PQ y  , hence 

   
1

0 1
8

 xy , x, y , . 

Suppose that the parallel from A to MN intersects the parallel from B to NP at the point 

C. It is easy to observe that   
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1 1

1 1
2 2

 
       

 
AC x x, BC y   and 

       
2 22 2 21 1 2 2         AB x y x y x y  

       
22 2 1 7

2 2 2 2
4 4

            x xy y x y x y x y  

   
2 3

1
4

   x y ,    

so 
3

2
AB . 

 
Figure 10 

 

It follows that the minimal value of the distance between the centers A, B is equal to 
3

2

, and it is obtained for  
1

1
8

x y , xy   , i.e.  

  
2 2 2 2

4 4

 
 x , y  or 

2 2 2 2

4 4

 
 x , y . 

To find the maximal value of AB one can observe that 

      
9

0 1 1 1
8

         x y x y xy x y , i.e. 
9

8
 x y . 

On the other hand, we have  

  
1

2
2

  x y xy , therefore   
1 1

0 1 1
82

     x y . 

As 

22
1 1

1
8 2

  
    

   
, then 

1 1
1 1 1

2 2
     x y  and we find that 

  

2 2

2 1 3 9 1
1 2 2

4 4 22

   
        

  
AB . 
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Thus 
1

2
2

 AB , with equality when 
1

2 2
x y  . Consequently,  

  
3 1

2
2 2

  AB . 

 

 

Section 6. LOCI 
 

Problem 6.1.  If A and B are fixed points on a given circle and XY is a variable diameter 

of the same circle, determine the locus of the point of intersection of lines AX and BY. 

You may assume that AB is not a diameter. 

 

Solution. Figure 11 and Figure 12  show two positions of the moving diameter XY. In 

either case, 
090XAY   and also 

AB
AYB   

2
 is constant. Thus, in Figure 11, 

the angle 
2

APB


  , which is the complement of AYB , is also constant. 

Similarly, in the Figure 12,  the angle 
'APY   is constant since it is the complement of 

AYB . Since  
'AP B   is the supplement of  

'APY  it is also constant. In Figure 11, 

the locus of points P such that APB  is constant is a circular arc on chord AB. 

In Figure 12, the triangle with fixed base AB and constant 
'AP B  has its vertex 

'P  on 

a circular arc on chord AB. Since APY  in Figure 11 is similar to  
'APY  in the Figure 

12, it follows that angles APB  and 
'AP B  are supplementary. Thus P  and 

'P  lie on the 
same circle. The radius of this circle, by the extended Law of Sine, is 

  
 2 2

2
2

AB AB AB
r

sin APB cos
sin

  
  
  

 

  . 

 

  
Figure 11          Figure 12 
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Problem 6.2. Suppose two unequal circles touch each other internally at a point A. A 

tangent to the smaller circle intersects the larger one at points B and C. Find the locus of 

the centers of the circles inscribed in triangle ABC .  

Solution. Let R and r denote the radii of the given circles  R r  and let D be the 

point of tangency of the chord BC and the smaller circle (Figure 13). Let K and L be the 

points of intersection of the chords AC and AB with the smaller circle. Finally, let O be 

the center of the circle inscribed in the triangle ABC .  

Since the angular measures of the arcs AK and AC are equal, RxAC,rxAK  , 

hence we get  

   DC AC CK R r Rx   
2 2

. 

Similarly, 

    22
RyrRDB,ryAL,RyAB  . 

Consequently, 
AB

AC

y

x

DB

CD
 , so that is the bisector AD of the angle BAC.  

 
       Figure 13 
 
Further, we have 

    

  2
  



AO AC Rx R

OD CD R rR r Rx
. 
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     Figure 14 

                         

Thus, the desired locus is a circle of radius 
1

2
AE   touching internally the two given 

circles at the same point A. From the obvious identity 
AE AO

AT AD
  (Figure 14) it follows 

    
 

AO r R
r

AD R R r
. 

 

Problem 6.3. Suppose ABC  is an isosceles triangle with BC a and AB AC b   . 

Two variable points M and N are given by the conditions: 

           M AC ,N AB  and 
2 2a AM.AN b BN.CM . 

If the straight lines BM and CN intersect in point P, find the locus of the variable point P 

. 
 

First solution. Consider D on the line CB such that the point B  is between D  and C , 

and AD CD  (Figure 15). From the similar triangles ABC  and DAC we obtain 
2

b
CD

a
 . The common point Q of the lines AD and CN satisfies  

   1
QA CD NB

QD CB NA
   , 

therefore 

2

2

QA a NA MC

QD NB MAb
   , i.e. 

 

QA MC

CD QA b MC
 or 

QA MC

CD b
 .  

Thus,      
QA CD b AC

MC b a BC
    and further BMC  is similar to CQA .  
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Figure 15 

 

This proves that MBC NCA , whence    BPC B 0180  is constant, 

which shows that P describes the arcBC  of the circle that is tangent to AB and AC, 

respectively, at B and C.  

Second solution. Let R be the point of the segment AB  such that AR AM . It 

follows: 

  

2

2

RA AN AM AN AC

RB NB MC NB BC
     , 

therefore ACR BCN , by Steiner’s Theorem. Whence ABM BCN  and the 

solution finishes as above. 
 
 
 

 

Section 7. CONSTRUCTION PROBLEMS 
 

Problem 7.1. Construct a triangle ABC  with given angle  C , where 
0 00 180    

altitude ah  and  median cm .  

 

Solution.  Analysis. Suppose that the triangle ABC  is constructed with 

         a cAD BC, AD h , CM m , ACB  (Figure 16, Figure17). 

The right angled triangle ACD can be constructed by the given elements: 

 i)     aACD , AD h  (Figure 16); or 

 ii) 
0180    aACD , AD h  (Figure 17). 
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Figure 16 
 

 
 

Figure 17 
 

We construct the line segment ME BC . Note that 
2

ah
ME  . Thus M  is the 

intersection point of two sets, i.e. 1 2M M М  , where 1M  is a circle with center C  

and radius cm  and 2M  is a line parallel to BC at a distance 
2

ah
. 

 

Construction. We construct the triangles ADC  with aAD h  and  ACD  

or 
0180  ACD , where   is an acute angle оr   is an obtuse angle, 

respectively. Then we construct the sets  1 2M , M  and determine their intersection point 

M, if there is one. The point B is intersection point for the lines AM and CD. 

 
Research. The problem has 2, 1 or 0 solutions, depending on the following 

conditions, respectively:  

Cm

ah /2ah

A

E

C

D

B

Cm ah

2

ah

A
M

E
C

D

B
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2 2 2

a a a
c c c

h h h
m , m , m    (see CME ). 

 

Proof. By construction we have    aAD h , ACB ACD , if   is an 

acute angle (Figure 16) and 
0 0180 180    aAD h , ACD ACB  - , if   is an 

obtuse angle (Figure17). The point M is the midpoint of the segment AB because, by 

construction, the distance from M to BC is equal to 
2 2

ah AD
  and 

2

ah
ME   for the 

triangle ABD. Moreover, by construction, aCM m . Consequently the triangle ABC  is 

the required.  
 
Problem 7.2. Construct a triangle with given median, bisector, and altitude through one 
of its vertices.  
 

Short Analysis and Construction. If the given altitude, bisector and median are CD, 

CL, and CM, respectively, then we construct the right angled triangles CDL and CDM. 

The straight line p,  M p, p MD , intersects the straight line CL at a point N (the 

line p is the perpendicular bisector of AB). Then CN is a chord of the circle (with a 

center O and radius OC), that is circumscribed about the triangle ABC . The center O is 

the intersection point of the perpendicular bisector s of CD and the line MN. The 

constructed circle intersects MD at points A and B. 

 

 

Section 8. TRANSFORMATIONS: ROTATION, SIMILARITY, INVERSION 
 

Problem 8.1. Given a triangle ABC  and the equilateral triangle PQR  (Figure 18). 

Suppose that 
0120  ADB BDC CDA  in the triangle ABC . Prove that 

x u v w   . 

 

Solution.  We shall construct the equilateral triangle PQR  and show that its sides have 

length u v w  . We rotate BCD  through 
060  counterclockwise about B  to position 

BFE  (Figure 19).  

First note that BDE  and BCF  are equilateral, so that DE v  and CF a , Now 

ADE   and DEF  are straight angles, both 
0 0120 60 , so that AF u v w   .  

Construct the equilateral triangle AFG  with side AF , as it is shown in Figure 20. Now,   

AF FG, CF BF   and 
060  CFA BFG AFB . Thus, CFA  is similar to 

BFG . It follows that BG AC b,   so that AFG  is the required equilateral triangle 

with side lengths x u v w   .  

At the end, we have to note that the point D  is called an isogonic center of triangle 

ABC   and can be constructed by drawing equilateral triangles 1 2BCP , CAP  and 3ABP  

externally of the triangle ABC . Then the lines 1AP , 2BP  and 3CP  intersect at the point 
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D. The side x  is given by the formula: 
2 2 2 22 4 3     ABCx a b c F , where  ABCF  

is the area of the triangle ABC . 

      

 
                                                 

Figure 18 

   

      Figure 19      Figure 20 
 
Problem 8.2. Give a geometrical interpretation of the system 

  

2 2 2

2 2 2

2 2 2 2

x xy y a

y yz z b

z zx x a b

  

  

   

 

and find x y z  . 

 

M

Q

R

P

x

aw

c

b

B

A

D

C

b

a

c

x

x

v

u

A

w

F

E

D

BC

u

va a

a

v

v

c

F

C
B

G

A

c

b

b

a

a
060
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Solution. If 0 0 0  x , y , z  then x,y,z  are the distances to the vertices of a right 

triangle ABC  in which the perpendiculars BC and CA are a and b, respectively, from a 

point M inside the triangle from which its three sides can be seen at an angle of 
0120 .  

To determine the sum x y z  , rotate the triangle CMA about C through an angle of 

060  in the direction external with respect to the triangle ABC . As a result, M and A go 

into 1M  and 1A , respectively (Figure 21). Then 1 1BMM A  is a straight line and, 

consequently, 

  
2 2

1 3x y z BM CM AM BA a b ab         . 

 
 

Figure 21 
                      

Similarly, we consider the case when one of the variables is negative - say 0y   and  

0 0120 60  AMB , AMC BMC , 0  CM y  (Figure 22). The other cases 

are dealt with likewise. 

The answer is:  
2 2 3x y z a b ab     . 

 

 
           

Figure 22 
 

Problem 8.3. Let X ,Y ,Z ,T  be four points in the plane. The segments  XY  and  ZT  

are said to be connected, if there is some point O in the plane such that the triangles 

OXY  and OZT  are isosceles with right angles at O . Let  ABCDEF   be a convex 

hexagon such that the pairs of segments AB, CE  and BD, EF  are connected. Show 

1M

1А

A B

M

C

a

x

b

z

yy
b

P

C

M

BA

ab

-y

z x
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that the points  A, C, D  and  F  are the vertices of a parallelogram and that the 

segments  BC  and  AE  are connected. 

 
Solution. We shall consider geometrical transformations. 

Let 1O  be the common vertex of the right isosceles triangles 1O AB  and 1O CE and let 

2O  be the common point of the triangles 2O BD  and 2O EF . If iR ,   1 2i , , denotes 

the rotation with the center iO  and angle 
2


, then    1 2A R B , B R D   so that, in 

terms of composition of transformations,   1 2A R R D . 

Similarly,    1 1

1 2

  E R C , F R E ,  that is       
11 1

2 1 1 2

  F R R C R R C   . 

We remark that  1 2R R  is a rotation by an angle π. This implies 

   
1

1 2 1 2


R R R R  and, as a by consequence, A and F are obtained from D and C, 

respectively, by the some rotation by an angle π. We conclude that ACDF  is a 

parallelogram. 
 

Problem 8.4. Consider a quadrilateral ABCD  with sides 

   AB a,BC b,CD c,DA d   and diagonals 1 2 AC d ,BD d . Prove that there 

exists a triangle with sides 1 2ac,bd ,d d . 

 

Hint. Use the inversion In  with, for example, center the point D  and coefficient  

2k cdd . Then the obtained triangle
' ' 'A B C , where 

     ' ' 'A In A , B In B , C In C    has sides  1 2

' ' ' ' ' 'A B ac, B C bd, C A d d   .  

 

Section 9. SPECIAL THEOREMS 
 

Problem 9.1 (Leibniz’s theorem). Let M be an arbitrary point in the plane and G the 

center of mass of a triangle ABC . Prove the identity 

   2 2 2 2 2 2 21
3

3
MG MA MB MC AB BC CA      . 

 

Solution. Let the points A,B,C  and M have the following coordinates in the 

rectangular Cartesian system:        1 1 2 2 3 3A x ,y ,B x ,y ,C x ,y ,M x,y , respectively. 

Then the point G has coordinates 

  1 2 3 1 2 3

3 3

x x x y y y
G ,

    
 
 

. 

Hence, the validity of the assertion follows from the identity 

  

2

1 2 33
3

  
  

 

x x x
x  
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2 2 22 2 2

1 2 3 1 2 2 3 3 1

1

3
            
 

x x x x x x x x x x x x  

and analogous relationship for the ordinates. 
 

Problem 9.2 (Bretschnaider’s theorem). Let a,b,c,d  be the sides of a quadrilateral, 

m and n  its diagonals and A, C its two opposite angles. The following relationship is 

fulfilled 

   2 2 2 2 2 2 2   m n a c b d abcd.cos A C . 

Solution. In the quadrilateral ABCD  (Figure 23) we have 

  AB a, BC b, CD c, DA d, AC m, BD n      . 

                                     

 
 

Figure 23 

Construct externally on the side AB, a triangle AKB similar to the triangle ACD, where  

   BAK DCA, ABK CAD ,  

and on the side AD we construct the triangle AMD similar to the triangle ABC , where  

   DAM BCA, ADM CAB . 

From the corresponding similarity we get 

  
ac bd ad

AK , AM , KB DM
m m m

    . 

In addition 

  
0180     KBD MBD CAD ABD BDA CAB , 

that is, the quadrilateral KBDM is a parallelogram. 

Hence, KM BD n  . But  KAM A C . 

By the Law of Cosines for the triangle KAM, we have 

   
2 2 2

2 2
ac bd ac bd

n cos A C
m m m m

      
          
      

, 

and, hence,  

C

A

MK

DB

c

da
m

n

b
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   2 2 2 2 2 2 2m n a c b d abcd.cos A C    .                           

 

 
Section 10. METRIC PROBLEMS 

 

Problem 10.1. Let ABC  be an equilateral triangle with side a, and M - some point in 

the plane at a distance d from the center of the triangle ABC . Prove that the area of the 

triangle whose sides are equal to the line segments MA, MB and MC can be expressed 

by the formula  

   
2 23

3
12

 F a d . 

        Solution. Consider the case when the point M (Figure 24) lies inside of the triangle 

ABC .  

 

 
Figure 24 

 

Rotate the triangle ABM about A through an angle of 
060  to bring B onto C. We get the 

triangle 1AM C  which is congruent to the triangle ABM; the triangle 1AMM  is 

equilateral, consequently, the sides of the triangle 1CMM  are equal to the line 

segments MA, MB, MC. The points 2 3M , M  are obtained in a similar way.  

The area of the hexagon 1 3 2AM CM BM  is twice the area of the triangle ABC , that is, 

equal to 
2 3

2
a .  

On the other hand, the area of this hexagon is expressed as the sum of the areas of 

three equilateral triangles 1AMM , 3CMM , 2BMM  and the three triangles congruent 

to the desired one.  
Consequently,  

A

2
M

C

B

M

1M

3M
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   2 2 2 23 3
3

4 2
F MA MB MC . a    . 

Using the result of Leibniz’s theorem, we get 

   2 2 23 3
3 3

4 2
F d a a   ,  whence  2 23

3
12

 F a d . 

Other cases of the position of the point M can be considered in a similar way. 
 

Problem 10.2 (Fermat’s theorem). Suppose ABCD  is a  rectangle with  

  2 2AB a, BC a  . 

Construct a semicircle externally on the side AB as diameter. Let M be an arbitrary point 

on the semicircle. If the line MD intersects AB at N, and the line MC at L, find 
2 2

AL BN . 

 

Solution. Let P be the projection of M on AB and let AP a x   (Figure 25).  

 

Figure 25 

Then 

   2 2 2

2
       



a
PB a x, MP y a x , AN a x

a y
,  

 

   
 2 22

2
2 2

a a x ya
NB a a x

a y a y

 
    

 
,  

and, similarly 

  
 2 2

2

a a x y
AL

a y

 



. 

Hence, 



 62 

   

 
 

2
2 2 2 2 2

2

4
2 2 2

2

a
AL NB a ay y x

a y

     



 

   

 
 

2
2 2 2 2 2

2

4
2 2 2 4

2

      
 



a
a ay y a y a

a y

. 

 
 

Section 11. GEOMETRIC INEQUALITIES 
 

Problem 11.1.  Let AB  be a diameter of a circle of radius 1 and let the points C   and 

E  be distinct points on the circle and on the same side of AB . If parallel chords  CD   

and  EF  cut AB  at an angle of 
045 , at points P  and Q  respectively,  prove that 

  2   PC QE PD QF . 

 
Solution. By the Arithmetic Mean – Geometric Mean Inequality, we have (Figure 26): 

     2 2 2 21 1

2 2
PC QE PD QF PC QE PD QF        , 

 

Let  M  be the midpoint of CD . Then OM  is perpendicular to CD . We have 

       2 22 2 2 22 2PC PD CM PM DM PM CM OM        . 

Similarly, 
2 2 2QE QF  , so that 2PC.QE PD.QF  .  Since PC QE , equality 

cannot hold, and we have 2 PC.QE PD.QF .  

 
Figure 26 

 

Problem 11.2. Consider a triangle ABC  and let O  be a point in its interior. Suppose 

straight lines OA, OB, OC   meet the sides of the triangle at 1 1 1A , B ,C ,  respectively, 

and suppose 1 2 3R , R , R , R  are the radii of the circumcircles of the triangles 

OBC,OCA,OAB, ABC , respectively. Prove that 
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  1 1 1
1 2 3

1 1 1

  
OA OB OC

R R R R
AA BB CC

. 

 
Solution. It is obvious that 

  1

1 1

4

4





 
  

 

OBC

ABC

FOA OB OC BC R

AA F R AB BC CA
 , i.e. 

  1
1

1

OA R
R OB OC BC

AA AB BC CA
   

 
 ,  etc. 

So we have to prove that 

  OB OC BC AB BC CA       . 

Let us consider the complex numbers         O o , A a , B b , C c  . Then the last 

inequality becomes: 

  |b | | c | |b c | | a b| |b c | | c a |          , 

that is 

  
2 2 2 2 2 2 2 2      |b c c b| | ab bc ca a b b c c a | , 

which is obvious. 
 
Problem 11.3. Prove the Finsler-Hadwiger  inequality 

(10)       
2 2 22 2 2 4 3        a b c F a b b c c a , 

where a, b, c, F are the sides and area of any triangle, respectively.  
 
Solution. Denote 

       s a x, s b y, s c z ,  

where s  is the semi perimeter of the given triangle and 0x,y,z .  

Leaving 4 3F  at the right-hand side of the inequality (10) and, after transforming the 

left-hand side (for instance:     
22 4 4     a b c s b s c yz ) and replacing F by 

Heron’s formula 

        F s s a s b s c , 

we get the equivalent inequality  

(11)   3    xy yz zx x y z xyz . 

Dividing both sides of the inequality (11) by xyz  and making the substitutions  

   
xy yz zx

u , v , w x uw, y vu, z wv
z x y

      , 

we get another equivalent inequality, namely 

   3    u v w uv vw wu . 

This, on squaring, is reduced to the known inequality 

  
2 2 2    u v w uv vw wu , 
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Which is equivalent to the obvious  
2

0  u v . 

             

Problem 11.4. Prove that in any triangle with medians a b cm , m , m  and area F  the 

following inequality holds 

(12)  
1 1 1 3

  
b c c a a bm m m m m m F

. 

Solution. Let a b ca, b, c, F, m , m , m  be the usual elements of an arbitrary triangle 

ABC . With the medians of a triangle ABC  one can form a “median-dual triangle” 

1AA M  (Figure 27), where the figures  1 1BB MA  and 1AMCC  are parallelograms: 

 

 
Figure 27 

Furthermore, it is obvious that the area mF  of the median-dual triangle 1AA M  is 

3

4
mF F . Indeed,  

  1

1

2 3

2 4





  
AA Nm

AA C

FF AN

F F AC
 

  
Thus, the inequality (12) becomes 

(13)   
1 1 1 3 3

4
  

b c c a a b mm m m m m m F
. 

Writing a,b,c,F  instead of a b c mm , m , m , F , equality (13) reduces to  

  
3 3

4
  

F F F

ab bc ca
 

or 

(14)  
3 3

2
  sin A sin B sinC , 

which is a known inequality. For a short proof, notice that the sine function is concave 

down on  o,  and so, by Jensen’s inequality,  

                     
3

3 3 3 2

    
  

sin A sin B sinC A B C
sin sin   . 
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Now, from  (14) is easy to go back to (13), or (12). 
 

Problem 11.5. Suppose a triangle has sides a,b,c . Determine in terms of a,b,c   the 

area 1F  of the largest equilateral triangle circumscribed about the given triangle, and the 

area 2F  of the least equilateral triangle inscribed in it.  

 
Hint. There are two families of equilateral triangles circumscribed about the given 
triangle. 
  

 
Section 12. APPLICATIONS OF VECTORS IN GEOMETRY 
 

Problem 12.1. Let M be an arbitrary point on the side BC of the triangle ABC . Let 

0 1 2C ,C ,C  be the incircles of the triangles ABC,ABM ,ACM , respectively and I  be 

the center of 0C .  

1. Prove that 1 2C ,C  are tangent if and only if 0M C . 

2. Suppose 0M C  and let D and C be the midpoints of the segment BC and AM, 

respectively. Prove that the points I, S, D are collinear and 



IS s a

ID a
. 

 
Solution.  
         i) We will use the following result: Suppose that the inscribed circle of a triangle 

ABC  touches the sides AB, BC, CA at points  1 1 1C ,A ,B , respectively (Figure 28). Then   

  1 1
2

 
   

AB AC BC
AB AC s a .                   

 
Figure 28 

 

Let the line AM touch the circles 1 2C ,C  at points  1 2T ,T , respectively (Figure 29). The 

circles 1 2C ,C  are tangent if and only if  1 2T T , that is when 1 2AT AT .  

Using the above results, this is equivalent to  

  
2 2

   


AM AB BM AM AC CM
, 

    AB BM AC BC BM  
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or  

  1
2

 
 

AB BC AC
BM BA   

and so 1 0 M A C , as required. 

 
Figure 29 

 

ii) Let a,b,c  be the side lengths of the triangle ABC  and let L be the intersection 

of BC with the internal bisector AI  of BAC  (Figure 30). 

By angle bisector theorem it follows that 

  
LB AB

LC AC
, i.e. 



LB AB

BC AB AC
. 

The key idea is to represent vectors AD, AS, AI  as linear combinations of the vectors 

AB, AC . Thus, 

 
Figure 30 

 

(15)   
1

2
AD AB AC  , 

(16)   
   1 1

2 2 2

s c AB s b ACCM BM
AS AM AB AC

BC BC a

   
    

 
 

and 
 

 
LC LB AC AB bAB cAC

AL AB AC AB AC
BC BC AB AC AB AC b c


    

  
. 
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As  BI is the bisector of ABL , it follows that 

  


  



AI AB c b c

acIL BL a

b c

, i.e. 
2




AI b c

AL s
. 

Consequently,  

(17)  
2

bAB cAC
AI

s


 . 

From (14), (15) and (16) easily follows that    sAI aAS s a AD . The equation 

1


 
a s a

s s
 shows that the point I lies on the line segment SD and is such that  

 



IS s a

ID a
. 

Problem 12.2. Let ABCD  be an inscribed quadrilateral and let M be a point on its 

circumcircle. Let 1 2 3 4H , H , H , H  be the orthocenters of triangles MAB, MBC, 

MCD, MDA, respectively. Prove that 

i)   the quadrilateral 1 2 3 4H H H H is a parallelogram; 

ii) 1 3 2H H EF , where  E   and  F  are the midpoints of the segments AB  and 

CD , respectively.  

 
Solution.  

1. We shall use vector algebra. The circum center of all triangles 

MAB, MBC, MCD, MDA is  the point O. Hence, by Sylvester’s formula, we 

have 

  1 2OH OM OA OB; OH OM OB OC;       

  3 4OH OM OC OD; OH OM OD OA      . 

Further computations give 

  1 2 2 1 3 4 4 3      H H OH OH OC OA OH OH H H . 

Thus the figure 1 2 3 4H H H H is a parallelogram. 

2. Using vectors again, we have (Figure 31): 

  1 3 3 1 2        H H OH OH OC OD OA OB AD BC EF . 
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Figure 31 

 

Hence 1 3 2H H EF . 

 
   



 69 

MATHEMATICAL INDUCTION 

Michael Lambrou 
UNIVERSITY OF CRETE 

 
 
Section 1. Historical Introduction   
 
  In philosophy and in the applied sciences the term induction is used to describe the 
process of drawing general conclusions from particular cases. For Mathematics, on the 
other hand, such conclusions should only be drawn with caution, because mathematics 
is a demonstrative science and any statement must be accompanied by a rigorous proof. 
For example John Wallis (1616-1703) was criticized strongly by his contemporaries 
because in his Arithmetica Infinitorum (1656), after inspecting the six relations,   
 

                                     ,          , 

 

                         ,          

 

           

 
stated without any further justification that the general rule, namely,  
 

                                                      

  
follows “per modum inductionis”.  

  Although Wallis’ claim is correct, amounting to the familiar statement (known to 
Archimedes) that   

                               , 

it nevertheless needed proof.  

  One way to deal with this problem is with the so-called method of complete or 
mathematical induction. This topic, sometimes called just induction, is the subject 
discussed below.  

  Induction is a simple yet versatile and powerful procedure for proving statements about 
integers. It has been used effectively as a demonstrative tool in almost the entire 
spectrum of mathematics: for example in as diverse fields as algebra, geometry, 
trigonometry, analysis, combinatorics, graph theory and many others.  

  The principle of induction has a long history in mathematics. For a start, although the 
principle itself is not explicitly stated in any ancient Greek text, there are several places 
that contain precursors of it. Indeed, some historians see the following passage from 

0 1 1 1

1 1 3 6


 



0 1 4 1 1

4 4 4 3 12

 
 

 

0 1 4 9 1 1

9 9 9 9 3 18

  
 

  

0 1 4 9 16 1 1
,

16 16 16 16 16 3 24

   
 

   

0 1 4 9 16 25 1 1
,

25 25 25 25 25 25 3 30

    
 

    

0 1 4 9 16 25 36 1 1

36 36 36 36 36 36 36 3 36

     
 

     

2 2 2 2

2 2 2 2

0 1 2 ... n 1 1
,

n n n ... n 3 6n

   
 

  

2 2 2 21 1 1
1 + 2 +...+ n n (n 1) n(n 1)(2n 1)

3 6n 6
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Plato’s (427-347 BC) dialogue Parmenides (§147a7-c3) as the earliest use of an 
inductive argument:  

Then they must be two, at least, if there is to be contact. - They must. - And if to the two 
terms a third be added in immediate succession, they will be three, while the contacts 
[will be] two. - Yes. - And thus, one [term] being continually added, one contact also is 
added, and it follows that the contacts are one less than the number of terms. For the 
whole successive number [of terms] exceeds the number of all the contacts as much as 
the first two exceed the contacts, for being greater in number than the contacts: for 
afterwards, when an additional term is added, also one contact to the contacts [is 
added].  - Right. - Then whatever the number of terms, the contacts are always one less. 
-True.  

  The previous passage is from a philosophical text. There are, however, several ancient 
mathematical texts that also contain quasi-inductive arguments. For instance Euclid 
(~330 - ~ 265 BC) in his Elements employs one to show that every integer is a product 
of primes.  

An argument closer to the modern version of induction is in Pappus' (~290-~350 AD) 
Collectio. There the following geometric theorem is proved.  

 Let AB be a segment and C a point on it. Consider on the same side of AB three semi-
circles with diameters AB, AC and CB, respectively. Now construct circles Cn as follows: 
C1 touches the three semi-circles; Cn+1 touches Cn and the semicircles on AB and AC. If 
dn denotes the diameter of Cn and hn the distance of its centre from AB, then hn = ndn. 

  The way Pappus proves the theorem is to show geometrically the recurrence relation 
hn+1 /dn+1 = (hn + dn)/dn. Next, he invokes a result of Archimedes (287 - 212 BC) from his 
Book of Lemma's (Proposition 6) which states that the conclusion of the theorem above 
is true for the case n = 1. Coupling this with the recurrence relation, he is able to 
conclude the case for the general n.  

  After the decline of Greek mathematics, the Muses flew to the Islamic world. Although 
induction is not explicitly stated in the works of mathematicians in the Arab world, there 
are authors who reasoned using a preliminary form of it. For example al - Karaji (953-
1029) in his al-Fakhri states, among others, the binomial theorem and describes the so 
called Pascal triangle after observing a pattern from a few initial cases (usually 5). He 
also knew the formula 13 + 23 + ... + n3 = (1 + 2 + ... + n)2. About a century later we find 
similar traces of induction in al-Samawal's (~1130-~1180) book al-Bahir, where the 
identity 12 + 22 + 32 + ... + n2 = n(n+1)(2n+1)/6 appears. Subsequently Levi Ben Gershon 
(1288-1344), who lived in France, uses quasi-inductive arguments in his book Maasei 
Hoshev written in Hebrew.  

  The first explicit inductive argument in a source written in a western language is in the 
book Arithmeticorum Libri Duo (1575) of Francesco Maurolyco (1495–1575), a 
mathematician of Greek origin who lived in Syracuse. For instance it is shown inductively 
in this text that the sum of the first n odd integers is equal to the nth square number. In 
symbols, 1 + 3 + 5 + … + (2n – 1) = n2, a fact already known to the ancient 
Pythagoreans.     

  Another early reference to induction is in the Traité du Triangle Arithmetique of  Blaise 
Pascal (1623–1662), where the pattern known to-day as 'Pascal’s Triangle' is discussed. 
There the author shows that the binomial coefficients nCk satisfy nCk : 

nCk+1 = (k + 1) : (n 

– k), for all n and k with 0  k < n. Here the passage from n to n + 1 uses nCr = n-1Cr-1 + n-

1Cr. 
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   All the above authors used an intuitive idea about the concept of natural number. This 
is sufficient for our purposes here, and below we shall follow suit. A characteristic of 
modern mathematics, however, especially from the late 19th century, was to develop the 
theory axiomatically. In particular, this was accomplished for the natural numbers by 
Giuseppe Peano (1858-1932) who published the so called 'Peano's axioms' in 1889, in a 
pamphlet entitled Arithmetices principia, nova methodo exposita. The exact procedure 
need not concern us here. We only mention that one of the axioms was so designed as 
to incorporate induction as a method of proof. In other words, the intuitive way to deal 
with induction below is actually a legitimate technique.   

  In what follows, the theory is presented in short sections, each with its own problems. 
These are rather easy especially at the beginning, but those in the last paragraph are 
more challenging. Several questions can be solved by other means, but the idea is to 
use induction in all of them.   

 

Section 2. Basics 

  The principle of mathematical induction is a method of proving statements concerning 
integers. For example consider the statement "12 + 22 + 32 + ... + n2 = n(n+1)(2n + 1)/6", 
which we denote by P(n). One can easily verify this for various n, for instance 12 = 1 
=1.(1+ 1)(2.1 + 1)/6, 12 + 22 = 5 = 2.(2 + 1)(2.2 + 1)/6,  12 + 22 + 32 = 14 = 3.(3 + 1)(2.3 + 
1)/6 and so forth. Here we verified the statement for the cases n = 1, n = 2 and n = 3 (in 
a while we shall see that the last two can be dispensed with) but assume that we have 
verified it up to the particular value n = k. The last statement means that we are certain 
that for this particular value k we have "12 + 22 + 32 + ... + k2 = k(k + 1)(2k + 1)/6". But is 
the formula true for the case of the next integer n = k + 1? We claim that it is. To see 
this, making use of the fact that we have 12 + 22 + 32 + ... + k2 = k(k + 1)(2k + 1)/6, we 
argue  

  12 + 22 + 32 + ... + k2 + (k + 1)2 = k(k + 1)(2k + 1)/6 + (k + 1)2                (by assumption) 

                                                                               = (k + 1)[k(2k + 1) + 6(k + 1)]/6 

                                                   = (k + 1)(k + 2)(2k + 3)/6, 

and this last is precisely the original claim for n = k + 1.  

  Let us recapitulate: We wanted to prove that the statement P(n) is true for all integers n 

 1. We first verified it for n = 1; then, assuming that it is true for n = k, we verified it for n 
= k + 1. In other words, reiterating our result, the validity of P(1) implies that of P(2); the 
validity of P(2) implies that of P(3); the validity of P(3) implies that of P(4), and so on for 

all integers n  1.  

  The schema we use in the proof can be summarised symbolically as 

                                                   P(1)   

                                                   P(k)  P(k +1) 

                                                 ____________________ 

                                                    P(n) true for all nN 

 The step "P(k)  P(k +1)" in the proof is called the inductive step; the assumption that 
P(k) is true, is called the inductive hypothesis.  

Here is another example.  
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Example 2.1 (Bernoulli's inequality). Show that if a is a real number with a > -1, then (1 + 

a)n 
 1 + na for all nN. 

Solution. For n = 1 it is a triviality (in fact we get an equality). Assume now validity of the 

inequality  for n = k; that is, assume (1 + a)k 
 1 + ka. This is our inductive hypothesis, 

and we are to show (1 + a)k+1 
 1 + (k + 1)a. We have  

                             (1 + a)k+1 = (1 + a)(1 + a)k 

                                               (1 + a)( 1 + ka)                (by the inductive hypothesis) 

                                             = 1 + (k + 1)a + ka2 

                                              1 + (k + 1)a                      (since ka2  0). 

This, by the principle of induction, completes the proof.  

  As a final remark, the above examples start from n = 1. This need not be always the 
case and there are cases (see problems) that induction may start at any another integer. 
The situation is self explanatory and there is no need to qualify it any further.  

  The next problems require the verification of a variety of formulae. None of these 
should present the reader with any difficulty and the problems are there only to 
familiarise him/her with the idea of induction. In fact, the reader should try to do several 
of these problems mentally.   

Problem  2.1.(Routine). Show inductively that each of the following formulae is valid for 
all positive integers n.  

1. 13 + 23 + 33 + … + n3 = n2(n + 1)2/4,  

2. 14 + 24 + 34 + … + n4 = n(n + 1)(2n + 1)(3n2 + 3n – 1)/30,  

3. 15 + 25 + 35 + … + n5 =  n2(n + 1)2(2n2 + 2n – 1)/12,  

4.  

5.  

6.  

7. (n + 1)(n + 2)...(2n – 1)(2n) = 2n .1.3.5....(2n –1),  

8.  

9.  

10. (cosx)(cos2x)(cos4x)(cos8x)...(cos2n - 1x) =   (for xR with sinx  0), 

11.   (for xR with sinx  0), 

1 1 1 1 n
... ,

1 2 2 3 3 4 n(n 1) n 1
    

    

1 1 1 n(n 3)
... ,

1 2 3 2 3 4 n(n 1)(n 2) 4(n 1)(n 2)


   

       

2 2 2 2 2 2 2 2 2

3 5 7 2n 1 n(n 2)
... ,

1 2 2 3 3 4 n (n 1) (n 1)

 
    

 

n n

k
k 1 k 1

(2k)!
1 3 5 ... (2k 1),

k!2 

      

n nx x(x 1) x(x 1)...(x n 1) (x 1)(x 2)...(x n)
1 ... ( 1) ( 1) ,

1! 2! n! n!

      
      

n

n

sin 2 x

2 sin x

n

k 1

sin 2nx
cos(2k 1)x ,

2sin x
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12. , 

13. (15 + 25 + 35 + … + n5) + (17 + 27 + 37 + … + n7) = 2(1 + 2 + 3 + … + n)4, 

14.  

Problem 2.2. If a sequence (an) satisfies  

       a) an+1 = 2an + 1 (nN), show that an + 1 = 2n-1(a1 + 1).  

       b) a1 = 0 and an+1 = (1 - x)an + nx (nN), where x ≠ 0, show that  

                                           an+1 = [nx - 1 + (1 - x)n]/x. 

Problem 2.3. Let (an) be a given sequence. Define new sequences (xn), (yn) by x1 = 1, x2 

= a1, y1 = 0,  y2 = 1 and, for n  3, xn = an xn-1 + xn-2, yn = an yn-1 + yn-2. Show that  

 xn+1yn - xnyn+1 = (-1)n . 

Problem 2.4. If each of a1, a2, … , an, is a sum of two perfect squares, show that the 
same is true for their product.  

Problem 2.5. Show that 2n5/5 + n4/2 – 2n3/3 - 7n/30 is an integer for all nN. 

Problem 2.6. Show that if x  y, then the polynomial  x – y divides xn – yn. 

Problem 2.7. Show that a convex n-gon has ½ n(n – 3) diagonals (n ≥ 3).  

Problem 2.8. Prove the binomial theorem inductively. Namely, show that  

                                                

where  You may use n+1Ck = nCk -1 + nCk (1  k  n). (The binomial 

theorem was known to the Arabs. They did not have a complete proof, but after verifying 
it for few small n they stated the general form using in a quasi-inductive argument. Later 
the theorem was rediscovered by Isaac Newton (1654-1705), who included it in his 
celebrated Philosophiae Naturalis Principia Mathematica (1687). For the proof he used a 
combinatorial argument. The first inductive proof was by Jakob Bernoulli (1654-1705), 
published posthumously in his Ars Conjectandi (1713) ). 

Problem 2.9. It is easy to see that the number  can be written in the form 

. Show a) inductively and b) without induction, that the numbers  satisfy 

 (nN). 

Problem 2.10. Show that the number  is divisible by at least n distinct primes. 

Problem 2.11. If Fn =  is the nth Fermat number (n = 0, 1, 2, …), show that  

Fn – 2 = (a – 1)F0F1… Fn -1 (nN).  

Problem 2.12. Prove by induction that n! > 3n for n ≥ 7. 

n 1

n radicals

2 2 ... 2 2 2cos
2 


    

1 1 1 1 1 1 1 1
... 1 ... .

n 1 n 2 2n 2 3 4 2n 1 2n
         

  

n
n n k n k

k

k 0

(a b) C a b 



 

n

k

n!
C .

k!(n k)!




n(2 3)

n na b 3 n na ,b
2 2

n na 3b 1 

22 1
n



n2a 1
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Problem 2.13. If a0, a1, a2, … is a sequence of positive real numbers satisfying a0 = 1 

and (n = 0, 1, 2, …), show that . 

Problem 2.14. A result of Ramanujan (whose proof is beyond the scope of this book) 

states that = 3. Use Ramanujan’s result to show that for 

all nN,   

 

Section 3. Patterns  

    One of the disadvantages of the method of induction, as reflected by some of the 
examples portrayed above (especially in Problem 1), is that one needs to know 
beforehand the formula describing the situation considered. It is only then that one may 
embark on proving it. But this need for foreknowledge can often be remedied by 
detecting patterns after judicial evaluation of special cases. In practice it means that one 
needs to conjecture the underlying rule, and then verify whether it is, indeed, correct. In 
other words, we have to do some guessing. The following examples elucidate this point. 

Example 3.1. For what values on n is 2n + 1 a multiple of 3?  

Solution. By checking small values of the integer n one realizes that 2n + 1 is a multiple 
of 3 for n equals 1, 3, 5 and 7, but fails to be so when n equals 2, 4, 6 or 8. It seems 
reasonable to guess that 2n + 1 a multiple of 3 precisely when n is odd. This turns out to 
be correct, and the following inductive argument can be used (how?) to verify the claim: 
Write an = 2n + 1. Then an + 2 = 2n + 2 + 1 = 4(2n + 1) – 3 = 4an – 3, which is a multiple of 3 

precisely when an is.    

Example 3.2.  If f(x) = 2x + 1, guess a formula for the nth term of the sequence f1 = f(x), f2 

= f(f(x)), f3 = f(f(f(x))), f4 = f(f(f(f(x)))), … and then prove it by induction.  

Solution. By direct calculation one verifies that f2 = 4x + 3, f3 =  8x + 7, f4 = 16x + 15 and 
so on. If these examples are not adequate to guess the pattern, the reader should  
continue with further iterations of f. Sooner or later one suspects that fn = 2nx + 2n -1. It 
turns out that the guess is correct, as the reader should supply the missing portions of 
the following inductive argument that settles the matter: fn+1 = f(fn(x)) = f(2nx + 2n -1) = 

2(2nx + 2n-1) + 1 = 2n+1x + 2n+1-1.  

Example 3.3. By considering the numerical sequence  
                2 – 1, 3  –  (2 – 1), 4 – (3  –  (2 – 1)), 5 – (4 – (3  –  (2 – 1))), …  
guess and then prove inductively the numerical value of  
                      n – (n – 1 – ( n – 2 – (n – 3 – (…–  (3  –  (2 – 1))...))).  

Solution. The first few expressions simplify to 1, 2, 2, 3, 3 and 4 respectively. One may 
guess that the general pattern is  

n – (n – 1 – ( n – 2 – (n – 3 – (…–  (3  –  (2 – 1))...))) =  

  This is easy to verify inductively and the details are left to the reader, who should 

consider separately the cases n even and n odd.   

2

1 2n n na a a  1/ 2 1/3 1/ 4 1/

1 2 3 4 ... ...n

na a a a a     

1 2 1 3 1 4 1 5 1 ...    

1 n 1 (n 1) 1 (n 2) 1 (n 3) 1 ... n 1.         

n / 2 if n is even

(n 1) / 2 if n is odd
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  A word of caution is necessary here: No matter how many initial cases we check in a 
particular situation, a pattern that seems to emerge is not sufficient to draw conclusions. 
A proof must always follow our guess and failure to devise such a proof may indicate 
that our conjecture is, perhaps, wrong. There are several examples showing that even 
first rate mathematicians were deceived by a few special cases. The great Fermat, for 

example, after observing that      and 

 are prime numbers, thought that  is a prime for each n. This 

turned out to be false, and the first counterexample was given by Euler who found that 

  

Sometimes the first counterexample to what might appear to be a pattern is very far 
away. For instance, the numbers 

http://primes.utm.edu/glossary/page.php/GCD.htmln17+9 and (n+1)17+9 are relatively 

prime for n =1, 2, 3, . . . successively, and for a very long time after that. But is this 
always the case? No, and the first counterexample is for  

            n = 8424432925592889329288197322308900672459420460792433. 

  There are two delightful articles by Richard Guy, entitled The Strong Law of Small 
Numbers (American Mathematical Monthly, (1988) 697-711) and The Second Strong 
Law of Small Numbers (Mathematics Magazine, 63 (1990) 3 - 20) with numerous   
examples of sequences that seem to follow a pattern. But in some cases the reality is, 
against all intuition, very different. It is worth also looking at the web page 

               http://primes.utm.edu/glossary/page.php?sort=LawOfSmall   

where the previous example appears.  

  Here are some problems along the above lines, where the reader is invited either (i) to 
discover a pattern and then prove his/her hypothesis correct, or (ii) to find a 
counterexample that contravenes the pattern that appears at first sight.  

Problem 3.1. After guessing an appropriate formula by testing a few first values of n, use 
an inductive argument to find the following sums. 

1. 12 – 22 + 32 –  … + (– 1) n - 1 n2,  

2. 1 (1!) + 2 (2!) + 3 (3!) + … + n (n!),  

3. n2 – [(n – 1)2 – [(n – 2)2 – [(n – 3)2 – […–  [32  –  (22 – 12)]...]]]], 

4.  

Problem 3.2. It is given that the sum 16 + 26 + 36 + … + n6  can be simplified in the form 
n(n + 1)(2n + 1)(An4 + Bn3 – 3n + 1)/42, where A and B are constants independent of n. 
Guess appropriate values of A and B and then verify that they lead to a valid formula.  

Problem 3.3. If (pn) is the sequence of primes starting from p1 = 2, show that the 
sequence of numbers p1 + 1, p1 p2 + 1, p1 p2 p3 + 1, ... , p1 p2 p3 ... pn  + 1, used by Euclid 
in a proof in his Elements, consists of prime numbers for n = 1, 2, 3, 4, 5 but not for n = 
6. 

Problem 3.4. Given n points on the circumference of a circle, where n is successively 1, 
2, 3, 4,... , draw (in separate figures) all chords joining them. For this make sure that the 

,312
02  ,512

12  ,1712
22  25712

32 

6553712
42  122 

n

.670041764112
52 

   

1 1 1 1
... .

x(x 1) (x 1)(x 2) (x 2)(x 3) (x n 1)(x n)
   

       

http://primes.utm.edu/glossary/page.php/GCD.html
http://primes.utm.edu/glossary/page.php?sort=LawOfSmall
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points are "in general position" in the sense that no three chords are concurrent. Now, 
count the regions into which each circle is partitioned by the chords. You will find that 
they are, successively 1, 2, 4, 8, 16, ... What pattern seems to emerge? Is the next 
answer 32? Show that it is not!  

Problem  3.5. Guess the general term of the sequence (an) if a0 = 1, a1 = 2 and for n  1, 

 

Problem  3.6. Guess the general term of the sequence (an) if a1 = 1, and for n  2 we 

have  

 

Section 4. Divisibility  

The method of induction can be applied to an abundance of situations, not just proving 
formulae as, perhaps, most of the above examples suggest. In what follows we shall see 
some of these different circumstances. We start with a fairly easy situation, the case of 
divisibility of integers, of which we have already seen some problems in Section 2. We 
shall use the notation a | b to signify that an integer a divides, or is a factor of, an integer 
b.  

Example 4.1. Show that for each positive integer n we have 9 | 52n + 3n –1; that is, 9 
divides the number 52n + 3n –1.  

Solution. Let an = 52n + 3n – 1. It is clear that a1 = 27 is divisible by 9. Assume now that 
for n = k, the number an is divisible by 9, that is, 52k + 3k –1 = 9M for some integer M. We 
have to show that ak + 1 = 52(k + 1) + 3(k + 1) –1 = 25.52k + 3k + 2 is also divisible by 9. The 
idea is to somehow use our inductive hypothesis, and this can be done as follows:  

                                         ak + 1 = 25 52k + 3k + 2  

                                                  = 25 (52k + 3k –1) – 72k + 27  

                                                  = 25 9M – 9(8n – 3)   (by the inductive hypothesis) 

i.e.  ak + 1 is a multiple of 9. 

Therefore by the principle of induction 9 | an for all positive integers n.  

Problem  4.1. Redo the previous example more elegantly by considering ak + 1 - 25ak in 
place of ak + 1 alone.  

Example 4.2. Show that all numbers in the sequence 1003, 10013, 100113, 1001113,… 
and so on, are divisible by 17.  

Solution. We have 1003 = 1759, moreover, the difference between two consecutive 
numbers of the sequence is of the form 9010…0, which is also a multiple of 17 (note 901 

= 1753). With this information the reader should be able to fill the details of a full 

inductive argument.  

Problem 4.2. Show that for each nN, 72n – 48n – 1 is a multiple of 2304. 

Problem 4.3. Show that for each nN, 3 5 2n+1 + 23n+1 is a multiple of 17. 

Problem 4.4. Show that the sum of cubes of any three consecutive integers is divisible 
by 9.  

 

n 1 n n 1a a 6 a .  

1
1 2 n n2

a a ... a (n 1) a .    
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Section 5. Inequalities.  

We have seen an inequality, Bernoulli's inequality (Example 2.1), that depends on a 
natural number n. This particular one was proved using induction and, sure enough, 
many inequalities that depend on n can be dealt with by induction. For instance the 
following generalisation of Bernoulli's inequality can be shown by a minor modification of 
the proof given above.   

Example 5.1 (Weierstrass inequality). If an (nN) are real numbers that are either all 
positive or all in [-1, 0] then  

                                                   
Proof. As mentioned, the proof follows closely that of Bernoulli's inequality given above, 
and the details are left to the reader: For the inductive step then one only needs to 
multiply both sides by the positive number (1 + an+1), but some care must be taken when 
all an are in [-1, 0], in which case the term involving the summation sign is negative but 

positive.  

There are several inequalities in the text and in the problems of what follows, but here is 
a preliminary set. 

Problem  5.1. Prove by induction that a) 2n > n2 for n ≥ 5, b) 2n > n3 for n ≥ 10.  

Problem  5.2. Prove by induction that 2!4!…(2n)! > [(n + 1)!]n (nN). 

Problem  5.3. Prove that (2n)!(n + 1) > 4n(n!)2  for all n > 1. 

Problem  5.4. Prove for all integers n > 1 the inequality 

                                          . 

Problem  5.5. Prove that if ak satisfies 0 < ak < 1 for 1≤ k ≤ n, then  

                 (1 – a1)(1 – a2)…(1 - an) > 1 – (a1 + a2 + … + an). 

Problem  5.6. Prove that if ak satisfies 0 ≤ ak ≤ 1 for 1 ≤ k ≤ n, then  

                               2n-1(1 + a1 a2 …an) ≥ (1 + a1)(1 + a2)…(1 + an). 

 

Section 6. Variations of induction 

  Up to now the proof of a statement P(n) for all positive integers n, proceeded by 
verifying P(1) and then P(k +1) from the assumption that P(k) is true. There are variants 
of the inductive argument as will be shown in the following paragraphs. 

  a) Jumps: In this method we prove the validity of a statement P(n) by proceeding, say, 
2 steps at a time. In other words, the inductive step establishes the validity of   P(k + 2) 
from the assumption that P(k) is true. If, in addition, we verify that P(1) and P(2) are true, 

then we reach our goal as we clearly have the implications P(1)  P(3)  P(5)  P(7) 

 … and P(2)  P(4)  P(6)  P(8)  … which, collectively, cover all cases of P(n). 

Similarly we may proceed in jumps of any fixed tN. This requires showing the validity of 

P(k)  P(k + t) and of P(1), P(2), …, P(t).   

n n

k k

k 1k 1

(1 a ) 1 a


  

n

n 1 k

k 1

a a
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Example 6.1. Show that each nN, the equation  a2 + b2 = cn has a solution in positive 
integers.  

Solution. We work using jumps of 2: The cases for n = 1 and 2 are clear. Now, if  

 is a particular positive integer solution of the given equation for n = k, then a 

solution for the case n = k + 2 is obtained from   

Example 6.2. It is clear that a square can be divided into subsquares by drawing 
segments parallel to the sides. Show that it can be divided into n squares (of not 

necessarily equal size) whenever n  6.  

Solution. The figures below show how to divide the square into 6, 7 or 8 subsquares. 
Since a square can be further divided into four smaller ones, application of this operation 
increases the total number of squares in a subdivision by three (4 new ones and one 
lost). So we can use (how?) an inductive argument, jumping in 3's, to complete the 

proof.  

 

Note that the leaps need not be constant. Here is an example. 

Example 6.3. Show that there exists an infinite number of triangular numbers that are 
perfect squares. (Recall, triangular numbers are the integers of the form Tn = 1 + 2 + … 
+ n = ½ n(n + 1) ).  

Solution. T1 = 1 = 12. Suppose now that the triangular number Tk is a perfect square. Our 
problem is to utilize this information and find a bigger one that is also a perfect square. 
Somehow Tk+1, Tk+2 etc. do not seem to work and we need to do better than that. A 
moment’s reflection gives us a better choice: T4k(k+1) = 4k(k + 1)[4k(k + 1) + 1]/2 = 4(4k2 + 

4k + 1) Tk = 4(2k + 1)2Tk is clearly a perfect square along with Tk.  

Problem  6.1. Use an inductive argument in jumps of 2 to show that for all nN,  

       12 – 22 + 32 – 42 + … + (-1)n - 1 n2 = (-1)n - 1( 1 + 2 + … + n).  

Problem  6.2. (Eötvös Competition 1901). Use an inductive argument in jumps of 4 to 
show that 1n + 2n + 3n + 4n is divisible by 5, if and only if n is not divisible by 4. 

Problem  6.3. Use an inductive argument in jumps of 3 to show that no number of the 
form 2n + 1 is a multiple of 7.    

Problem 6.4. After verifying the simple equations  

 and  show using an 

2 2

1 1 1

ka b c 
2 2 2

1 1 1 1 1( ) ( ) .kc a c b c  

2 2 2 2 2 2
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2 2 2 2 2 2 2

1 1 1 1 1 1 1

2 2 2 4 4 4 4
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1 1 1 1 1 1 1 1
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inductive argument with jumps of 3 that for every n  6 there exist integers a1, a2, … , an 

such that  

Problem 6.5. (Erdös-Suranyi theorem). After verifying the simple equations 1 = 12,    2 = 
-12 - 22 - 32 + 42 , 3 = - 12 + 22  and  4 = - 12 - 22 + 32 show that for each natural number 

N there is an n and an appropriate choice of + and - signs (which we write as  in short) 

such that N =  12  22  32  …  n2.     

  b) Strong induction: In Euclid’s Elements it is shown that every integer k > 1 is a 
product of (one or more) primes. His proof is essentially the following. The statement is 
clearly true for k = 2. Suppose now that we have proved that all integers up to and 
including k are products of primes. Then for k+1 we can argue that it is either a prime 
number, in which case we are done, or a product of two smaller numbers. But each of 
these two smaller numbers are, by assumption, products of primes and hence so is k+1. 
By iterating the argument we conclude the corresponding property for k+2, k+3, etc, and 
eventually for all integers. 

  In other words, Euclid’s argument is a stronger version of induction where a) we verify 
P(1) and b) prove statement P(k+1) by assuming that all of P(1), P(2), … , P(k) are true 
(not just the last one P(k)). The inductive schema we invoke is then  the validity of the 

implications P(1)  [P(1) and P(2)]  [P(1) and P(2) and P(3)]  [P(1) and P(2) and 
P(3) and P(4)], and so on, finally covering all P(n).  

A simpler version of strong induction is to prove P(k+1) from the validity of  P(k-1) and 
P(k) (and not utilizing still smaller integers). In other words we first verify the validity of 

P(1), P(2) and then of the implication [P(k-1) and P(k)]  [P(k+1). Note that here we 

proceed, essentially, by the steps [P(1) and P(2)]  [P(2) and P(3)]  [P(3) and P(4)], 
and so on.  

Of course there are further variations, such as proving P(k+1) from the validity of  P(k-2), 
P(k-1) and P(k), after verifying the statement for small n. 

  The following paradigms exemplify these ideas. 

Example 6.4. A sequence (an) satisfies a1 = a2 = 4 and an+1an-1 = (an – 6)(an – 12)  for n = 
2, 3, ... . Show that it is constant. 

Solution. Of course we expect the constant to be 4, the common value of a1 and a2. We 
assume then that ak-1 = ak = 4. Using now both these assumptions, we conclude from the 
recursion that 4ak+1 = (4 – 6)(4 – 12) = 16, so that ak+1 = 4. Since by assumption a1 = a2 = 

4, it is easily seen that, for all n, we have an = 4.  

Example 6.5. Recall that the natural numbers satisfy  for all nN. Show 

that, conversely, if an > 0 is a sequence of real numbers such that   for 

all nN, then an = n (nN). 

Solution. The case n = 1 gives , so that a1 = 1 (as an > 0). Assume now that for all 

values of  k up to m we have ak = k, in other words a1 = 1, ... ,  am = m. This is our strong 

2 2 2
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a a a
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inductive hypothesis and we are going to use every bit of it. For n = m + 1 we have, by 
assumption, 

   13 + 23 + ... + m3 +  = (1 + 2 + ... + m + am+1)
2 

                                                                = (1 + 2 + ... + m )2  + 2(1 + 2 + ... + m)am+1 +  

so clearly  = m(m + 1)am+1 +  and so  am+1(am+1 + m )(am+1 - m  - 1) = 0, from 

which the claim follows.   

Problem  6.6. For the Fibonacci sequence, defined by F1 = F2 = 1, Fn+2 = Fn+1 + Fn, show 
that a) FnFn+1 - Fn-2Fn-1 = F2n-1 , b) Fn+1Fn+2 - FnFn+3 = (-1)n.  

Problem  6.7. Let (an) be the sequence of Example 6.4 with the only difference that a1 = 

2 and a2 = 20. Show that an = 9n2 – 9n + 2 (nN).  If, instead, we had a1 = 2 and a2 = 5, 
show an = 4 + (- ½)n-2.  

Problem  6.8. Given an angle a, define x by x + 1/x = 2cosa. Show that xn + 1/xn = 2cos 

na (nN). 

Problem  6.9. Show that if a, b satisfy a + b = 6 and ab = 1, then the number an + bn  a) 
is always an integer and b) is never divisible by 5.  

Problem 6.10. Let an = . Show that an is an integer and that 2n|an.  

Problem 6.11. Prove the statement of Pascal in his Traité du Triangle Arithmetique 
referred to in Section 1 above.  

Problem 6.12. Let a1, a2, a3, … be positive integers chosen such that a1 = 1 and an < an+1 

≤ 2an (nN). Show that every positive integer can be written as a sum of distinct an’s.  

Problem 6.13. Let a sequence (bn) satisfy b1 = 1, b2n = bn and b2n+1 = b2n + 1. Show that bn 

equals the number of ones in the binary representation of n.  

  c) Double induction: There are cases where the proof of the inductive step requires, 
in its own right, an inductive argument. The following examples illustrate this point. 

Example 6.6. Show that for each nN, 2 7n + 3 5n – 5 is a multiple of 24.  

Solution. Writing an = 2 7n + 3 5n – 5, the claim is clear for n = 1. Assuming it true for n 
= k then as ak+1 = 7 ak – 6 5k + 30, the inductive argument would be complete if we 
could prove that 6 5k – 30 is always a multiple of 24. We can now start a new inductive 

argument to prove the last statement, an easy task left to the reader.   

  d) Two dimensional induction: So far we have considered statements P(n) 
depending on a single integer n. But sometimes we meet statements depending on two 
(or more) integers. A useful inductive way to deal with such a statement, for simplicity 
call it P(m,n), is to proceed in stages, intermingling the m's and n's. For instance, we can 
prove the validity of a) P(1,1), then  b) of  P(2,1) and P(1,2), then c) of P(3,1), P(2,2) and 
P(1,3), and so on. This particular description moves, so to speak, 'diagonally'. Any other 
way which covers all (m,n) in stages, is just as acceptable.  

Example 6.7. (IMO 1972). Prove that (2m)!(2n)! is a multiple of m!n!(m+n)! for any non-
negative integers m and n.  
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Solution. We are to show that C(m, n) = (2m)!(2n)!/(m!n!(m+n)!), for m, n  0, is integral. 
This is certainly the case for C(m, 0) = (2m)!/(m!m!) (we leave this to the reader: one way 
to see it is to recognize it as a binomial coefficient). Finally it is easy to verify that C(m, n)  
= 4C(m, n – 1) - C(m + 1, n – 1), from which, using the previous, we can in turn verify 

that C(m,1) is integral for all m, then C(m, 2) for all m, C(m, 3) for all m, and so on.          

Problem 6.14. Prove inductively that the product of r consecutive integers is divisible by 
r!  

Problem 6.15. If (Fn) denotes the Fibonacci sequence, prove that  and 

. (Hint: Let P(n) be the first identity and Q(n) the second. Induction 

proceeds via  P(1)  Q(1)  P(2)  Q(2)  P(3)  ... ).  

e) Back and forth: This variant of the usual inductive procedure is in two steps. First 

one shows  P(1)  P(n1)  P(n2)   P(n3)   … for some chosen but fixed sequence 1 

< n1 < n2 < n3 < …   . Then shows the backward step P(k)  P(k-1). A moment's 
reflection shows that the backward step fills the gaps between the numbers 1, n1 , n2 , n3 
, … left unattended in the first step, completing the proof. Here is an example of such a 
proof of the AM-GM inequality. The first step uses the sequence 1 < 2 < 22 < 23 < … .  

Example 6.8. Show that for any sequence (an) of positive numbers we have  

                                               (n N) 

Solution. The case for n = 1 is trivial. Assuming validity of P(k) for all sequences (an) of 
positive numbers, verification of P(2k) is as follows: Apply P(k) to the sequence     ((a2n-1 
+ a2n)/2 ). We get  

               

                                                                          

which is easily rewritten as P(2k), namely  

                                            

So we now know the inequality for the cases P(1), P(2), P(22), P(23),  … .  

For the backward step, we assume P(k) and derive P(k-1). For this purpose, by P(k) 
applied to the k numbers a1, a2, …, ak-1 and  (a1+ a2 + …+ ak-1 )/(k-1) , we have           

2 2
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which is easily seen to reduce to statement P(k-1) after collecting terms.  

Problem 6.16. Redo the step P(k)  P(2k) in the proof of Example 6.7 by making use of 

the equality , thereby giving a slightly 

different proof of the AM-GM inequality. 

Problem  6.17. (Jensen's inequality). If f : I  R, where I  R is an interval, is a concave 

function, then  for all a1, a2, …, an in I. The 

reverse inequality is true for convex functions. (Recall, concave functions satisfy 

 and convex ones the reverse inequality).   

 f) Strengthening: The following example illustrates this curious technique, which will be 
explained  immediately after.  

Example 6.9. Show that for n ≥ 2,   

Solution. Here the inductive step does not work, so will modify our approach. We show 

instead the stronger inequality P(n):   

The case n = 2 is immediate, and for the inductive step we can clearly argue along the 

lines  which completes the proof. 

 

The curiosity is that although we failed to prove a statement, we managed to prove a 
stronger one! The mystery clarifies if we realize that proof of the inductive step the 
second time was based on a stronger hypothesis. So it is not surprising that the 
conclusion was also stronger. In the failed attempt, the inductive hypothesis was too 
weak to prove the full statement.  

Problem  6.18. Prove the inequality   

Problem  6.19. Prove the inequality  
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Problem  6.20. Show that  

The technique of strengthening has so far been used only to prove inequalities. One 
should not draw the conclusion that this is the only place that it can be used. Here is an 
example.   

Example 6.10. Show that for every n there exist n distinct divisors of n! whose sum is n! 

Solution. Before enunciating which exactly is the strengthened statement, let us attempt 
an inductive proof: The case n = 1 is clear. Assuming that there are k distinct divisors d1, 
d2, …, dk of k! whose sum is k!, we seek k + 1 distinct divisors of (k + 1)! whose sum is (k 
+ 1)!. Consider (k + 1)d1, (k + 1)d2, … , (k + 1)dk. They are divisors of (k + 1)!, they are 
distinct, they sum up to (k + 1)! but the problem is that they are only k of them. If we 
replace (k + 1)d1 by kd1 and d1, we have k + 1 numbers but now one of them, namely 
kd1, may not be a divisor of (k + 1)!. There is a way out of this difficulty, and this is by 
taking d1 = 1, but are we allowed to do this?  The answer is yes if we start all over again, 
but this time we strengthen our original statement to showing that "for every n there exist 
n distinct divisors of n! whose sum is n! and such that one of the divisors is 1". The 

procedure is now clear and the details are left to the reader.   

 

Section 7. Subtleties 

  At the beginning of this chapter we talked about the versatility of induction as a proving 
device. With the examples below we will see more clearly the diversity and adaptability 
of the versatile tool we are discussing. Here the application of the inductive hypothesis 
will be slightly more intricate.  

  Before coming to the first example, recall that so far the variable n to which we applied 
an inductive argument was pretty clear from the premises of the problem. There are, 
however, some interesting cases where the choice of the variable with which we chose 
to work, is rather subtle.  

Example 7.1. Show that for any set {a1, a2,…, an} of nonnegative integers, the 

expression X =  is an integer.    

Solution. Induction will not be on n but rather on the number N = a1 + a2 +…+ an. If N = 1, 
in which case (without loss of generality) a1 = 1, a2 = … = an = 0, the result is trivial. 

Suppose now that for some k  1, X is an integer whenever the sum a1 + a2 +…+ an = k. 
We show the same thing for n nonnegative integers whose sum is k + 1. Note that we 

may assume that aj  1 for all 1  j  n (if some aj = 0, it gives no contribution in X, so we 
may delete it). 

Let then a1 + a2 +…+ an = k + 1. By the inductive hypothesis applied to the numbers a1 – 
1, a2, … , an, we have that  
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is an integer. Similarly a2X/(a1 + a2 +…+ an), … , anX/(a1 + a2 +…+ an) are also integers, 
and hence so are their sum  

                                              

Problem 7.1. Give another proof of Example 7.1 using the identity 

 

In the next two examples we apply our inductive hypothesis in a more dexterous way. 

Example 7.2. Let A be any subset of {1, 2, 3, ... , 2n - 1} with n elements, where nN. 
Show that there are elements x and y of A (not necessarily distinct) with x + y = 2n.  

Solution. For n = 1 the result is clear. Assume the conclusion true for n = k and consider 
now a subset A of {1, 2, 3, ... , 2k + 1} with  k + 1 elements. We are to show that there 
exist x and y in A with x + y = 2(k + 1). If 1 and 2k + 1 are both in A, we are done, so we 
may assume that at least one of the two is missing. Delete from A the other. What 

remains is a set A' of at least k elements such that A' {2, 3, ... , 2k}. Subtract 1 from 
each element of A', to get a subset of {1, 2, 3, ... , 2k -1} with (at least) k elements. We 
apply our inductive hypothesis to this last set: Thus there are x and y in A such that (x - 

1) + (y - 1) = 2k, and so x + y = 2(k + 1).   

Problem  7.2. (Hermite’s identity) If n is a positive integer and x a real number, prove that  

                        

where [.] denotes ‘integer part’. (Hint: induction is not on n but rather on the unique kN 
with k/n ≤ x < (k+1)/n ). 

Problem  7.3. There are n fuelling stations on a circular track and the total gas among 
them is just enough for a car to complete the circuit. Show that there is a fuelling station 
from which the car can start and manage to complete the circuit. The car is allowed to 
use only the gas provided at the fuelling stations, which it can collect only as it goes 
along.  

 

Section 8. Harder Questions 

 

Problem 8.1. If x is a real number not of the form n + ½ for an integer n, let {x} denote 

the nearest integer to x (so that for example {e} = {π} = 3). Show  

Problem 8.2. Let n be an integer. Consider all points (a,b) of the plane with integer co-

ordinates such that 0  a, 0  b, a + b  n. Show that if these points are covered by 
straight lines then there are at least n + 1 such lines.  

Problem 8.3. Given a positive integer N perform the following operation to obtain a new 

integer s(N): First write N in its decimal form as N =  and then set s(N) = 

n
j

j 1 1 2 n

a X
X .
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. Show that repeated application of this operation will eventually lead to the 

number 1 or to the cycle 4, 16, 37, 58, 89, 145, 42, 20. (Remark: One can check by hand 
the validity of the claim for all three figure numbers, a fact which you may take for 

granted. Induction on N starts thereafter.)    

Problem 8.4. Show that every member of the sequence defined by a1 = a2 = a3 = 1 and 

an +3 = (1 + an+1a n+2 )/an (n  1) is an integer.  

Problem 8.5. If m and n are positive integers, show that so is   

Problem 8.6 (Chebychev inequality). Let a1  a2  ...  an  0 and b1  b2  ...  bn  0. 

Show that   What is the corresponding inequality if  0 ≤ 

a1 ≤ a2 ≤ ... ≤ an and 0 ≤ b1 ≤ b2 ≤ ... ≤ bn ?  

Problem 8.7. (Putnam 1968, slightly differently worded). Let S be a set of n elements 
and let P be the set of all subsets of S. Show that we can label the elements of P as A1, 

A2, ... , A2
n so that A1 = ∅ and such that any two consecutive sets in this labeling differ by 

exactly one element of S.  

Problem 8.8. (Putnam 1956, slightly differently worded). Given any 2n points (n  2) that 
are joined by n2 + 1 segments, show that at least one triangle is formed from these 
segments. 

Problem 8.9. Let A be a subset of {1, 2, … , 2n} with n + 1 elements. Show inductively 
that there exist x, y in A such that x divides y.  

Problem 8.10. Show that for any n > 1 there exists a finite set An of points on the plane 

such that for any xAn there are points x1, x2, …, xn in An each of which is at a distance 1 
from x.   

Problem 8.11. (Adapted from IMO 1997). Show that there exist infinitely many values of 

n for which we can find an nn matrix whose entries come from the set S = {1, 2, ... , 2n-
1} and, for each k = 1, 2, ... , n, its kth row and kth column together contain all elements of 
S.  

Solutions  

 

2.1) All the exercises are routine. Note however that j) requires sin(2y) = 2sinycosy, k) 

requires  with θ = (2n + 2)x and φ = 2nx. For the 

inductive step of l) we need usually written in the more familiar 

form .  

 

2

ka

m

(mn)!
.

m!(n!)

n n n

k k k k

k 1 k 1 k 1

1 1 1
( a ). ( b ) ( a b ).

n n n  

  

       
     

   

-
sin  - sin  = 2sin cos

2 2

 
    

 
2 2cos 2cos

2

 
   

 

2cos 2cos 1
2
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2.2) The inductive step uses ak+1 + 1 = 2ak + 2 = 2(ak + 1) = 2k(a1 + 1). The second case 
is just as routine. 

 

2.3) Use xn+1yn - xnyn+1 = (an+1 xn + xn-1) yn - xn(an+1 yn + yn-1) = -( xnyn-1 - xn-1yn). 

 

2.4) Use (x2 + y2)(u2 + v2) = (xu – yv)2 + (xv + yu)2.  

 

2.5) If P(k) = 2k5/5 + k4/2 – 2k3/3 – 7k/30 then, expanding,  P(k+1) = P(k) + integer.  

 

2.6) Use xn+1 – yn+1 = x(xn – yn) + yn(x – y).  

 

2.7) It is easy to see that an addition of new vertex to an k-gon increases the number of 
diagonals by k – 1 and ½ k(k – 3) + k – 1 = ½ (k + 1)(k – 2).   

 

2.8) This is a standard textbook proof. 

 

2.9) a) Use  so that 

 and . It is easy now to show that  b) It is 

easy to see by the binomial theorem that . Now use 

 

 

2.10) Use Note that and  do not have common 

prime divisors as they are both odd numbers differing by 2.   

 

2.11) The case n = 1 is clear. From the hypothesis Fk – 2 = (  – 1)F0F1… Fk-1 we have 

Fk + 1 – 2 = =  (Fk – 2) Fk  = (  – 1)F0F1… Fk-1 Fk . 

 

2.12) 7! = 5040 > 2187 = 37. If k! > 3k (where k ≥ 7) then (k+1)! = (k+1)(k!) > (k+1).3k ≥ 
8.3k > 3k+1.  

 

2.13) The condition  gives the first inequality. Assuming  we 

have , from which the result easily follows.  

 

2.14) The case n = 1 is Ramanujan’s result. For the inductive step, let  

n 1

n n n n n n(2 3) (a b 3)(2 3) (2a 3b ) (a 2b ) 3       

n 1 n na 2a 3b   n 1 n nb a 2b   2 2

n 1 n 1a 3b 1.  
n

n n(2 3) a b 3  
n n n(2 3) (2 3) (4 3) 1.    

12 2 22 1 (2 1)(2 1).
n n n

   
22 1

n

 22 1
n



a
12 2 21 ( 1)( 1)

k k k

a a a


    a

2

1 0 2 2a a a a  1/(k 1) 1/ k

k 1 ka a

 

2 (k 1)/ k

k k 1 k 1 k k 1a a a (a ) a
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 Now square both sides, subtract 

1 and divide by k. It gives the next case.  

 

3.1) a) (-1)n(1 + 2 + ... + n) =  (-1)nn(n + 1)/2   

        b) (n + 1)!   

        c) 1 + 2 + ... + n =  n(n + 1)/2   

        d) n/[x(x+n)] 

 

3.2) A = 3, B = 6. 

 

3.3) Initially we find the primes 3, 7, 31, 211, 2311 but for n = 6 the result is 30031 = 59 x 
509.  

 

3.4) The next number, corresponding to n = 6, is 31.  

 

3.5) We find a2 = 23/2, a3 = 27/4, a4 = 215/8 etc. One may guess and then easily verify by 

induction that an =  

 

3.6) It is easy to verify that a2 = 4, a3 = 9 etc. The guess an = n2 is correct and can be 

verified by induction. A quick way to do this is to verify first that  

4.1) This essentially the previous example: ak + 1 - 25ak = -9(8k - 3). 

 

4.2) If an = 72n – 48n – 1, for the inductive step consider ak+1 - 49 ak = 2304k.  

 

4.3) If an = 3.5 2n+1 + 23n+1, the inductive step can be sorted by writing ak+1 – 25ak =  

-17.22n+1. Alternatively, we could consider ak+1 – 8ak = 3.17.52k+1. 

 

4.4) If ak = k3 + (k + 1)3 + (k + 2)3, then ak+1 – ak = (k + 3 )3 – k3 = 9(k2 + 3k + 3).    

 

5.1) a) 25 = 32 ≥ 52. If  2k > k2 (where k ≥ 5) then 2k+1= 2.2k > 2.k2 = k2 + k2 ≥ k2 + 5k > k2 
+ 2k + 1 = (k + 1)2 . b) 210 = 1024 > 103. If 2k > k3 (where k ≥ 10) then 2k+1= 2.2k > 2.k3 = 
k3 + k3 ≥ k3 + 10k2 ≥ k3 + 3k2 + 3k + 1 = (k + 1)3.  

 

1 k 1 (k 1) 1 (k 2) 1 (k 3) 1 ... k 1.         

n n 1(2 1) / 22 .


n 1 n

n 1
a a .

n







 88 

5.2) The inductive step amounts to showing (k + 2)…(2k + 2) > (k + 2)k + 1. This is clearly 
true since each of the k + 1 terms of the left hand side is > (k + 2).  

 

5.3) If (2k)!(k + 1) > 4k(k!)2  then (2k + 2)!(k + 2) = (2k + 2)(2k + 1)[(2k)!(k + 1)](k + 2)/(k + 
1) > (2k + 2)(2k + 1)4k(k!)2 (k + 2)/(k + 1) = 4k+1((k + 1)!)2 (2k + 1)(k + 2)/[2(k + 1)2] > 
4k+1((k + 1)!)2.  

5.4) The inductive step amounts to showing , which is routine.  

 

5.5) The argument is a trivial adaptation of that of Example 5.1 in the text. 

 

5.6) For the induction step assume validity of the inequality for n = m and any sequence 
(ak) with 0 ≤ ak ≤ 1 for 1 ≤ k ≤ m. Let now n = m + 1 and consider a sequence (bk) with 0 
≤ bk ≤ 1 for 1≤ k ≤ m + 1. Apply the inductive hypothesis to a1 = b1, a2 = b2, … , am-1 = bm-

1 and am = bmbm+1. Thus 2m(1 + b1 b2 …bm-1(bmbm+1)) ≥ 2(1 + b1)(1 + b2)…(1 + bm-1) (1 + bm 

bm+1). The required result follows upon observing that  

2(1 + bm bm+1) ≥ (1 + bm)(1 + bm+1) (which is true as equivalent to the true statement  

(1 - bm)(1 - bm+1) ≥ 0. ) 

 

6.1) The inductive step in jumps of two requires adding to 12 – 22 + 32 – 42 + … + 

(-1)k - 1k2 the quantity (-1)k (k + 1)2 + (-1)k + 1(k + 2)2 = (-1)k – 1 [- (k+ 1) 2 + (k + 2)2 ] = 

(-1)k – 1 [(k+ 1) + (k + 2)]. It is easily checked that this added to the right hand side gives 
the expected result.  

 

6.2) The cases n = 1, 2, 3, 4 are immediate, for instance 5 does not divide 14 + 24 + 34 + 
44 = 354. For the inductive step use 1k+4 + 2k+4 + 3k+4 + 4k+4 – (1k + 2k + 3k + 4k) = 15.2k + 
80.3k + 255.4k = (a multiple of 5). 

 

6.3) Use 2n+3 + 1 = 8.2n + 1 = 7.2n  + (2n +1). 

 

6.4) If the n numbers (a1, a2, … , an-1, an) have the stated property, then clearly so do the 
n + 3 numbers (a1, a2, … , an-1, 2an, 2an, 2an, 2an). 

 

6.5) We go in jumps of 4 using (n + 1)2 - (n + 2) 2 - (n + 3) 2 + (n + 4) 2 = 4. Note further 
that the result extends to all integers: This is clear for -N if it is true for N, and 0 = 12 + 22 
+ 32 - 42 - 52 - 62 + 72.   

 

6.6) Routine using the definition. 

 

1
1

1
n n

n
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6.7) For a1 and a2 the result is clear. For the inductive step, assuming ak-1 = 9(k – 1)2 – 
9(k – 1) + 2 and ak = 9k2 – 9k + 2, it is easily seen that ak+1 = 9(k + 1)n2 – 9(k + 1) + 2.  

 

6.8) For the inductive step assume validity for both n = k and n = k - 1. Then use xk+1 + 
1/xk+1 = (x + 1/x)( xk + 1/xk) - (xk-1 + 1/xk-1) = 4(cosa)(cos ka) - 2cos(k - 1)a.  

 

6.9) a) Use  an+1 + bn+1  = (an + bn)(a + b) – ab(an-1+ b n-1) = 6(an + bn) - (an-1+ b n-1).  b) 
Iterating the previous we get  

an+1 + bn+1 = 6[6(an-1 + bn-1) - (an-2 + b n-2)] - (an-1+ bn-1) = (multiple of 5) - (an-2 + b n-2) .   

 

6.10) Note that an+1 = 6an - 4an-1 (a quick way to see this is to observe first that a = 

and b = satisfy the equation x2 = 6x – 4). It also follows inductively  that  

an+1 = 6.2n.(integer) – 4. 2n-1.(integer) = 2n+1.(integer). 

 

6.11) For the inductive step assume the result true for n = m and all k < n. Then m+1Ck : 
m+1Ck+1 = (mCk-1 + mCk) : (

mCk + mCk+1). Now divide both numerator and denominator by 
mCk, and use mCk-1 : 

mCk = k : [n – (k – 1)], mCk : 
mCk+1 = (k + 1) : (n – k). 

 

6.12)  For the induction step assume that every positive integer x with x ≤ ak can be 
written as distinct elements from a1, … , ak-1, ak. Then any y with ak < y ≤ ak+1 can be 
written as y = ak + x with 1 ≤ x ≤ ak+1 - ak ≤ ak and the induction hypothesis may be 
applied to x.  

 

6.13) An inductive proof follows easily from the observations: The binary representation 
of 2n is the same as that of n but with a zero adjoined in the end. That of 2n + 1 is the 
same as that of 2n only the last figure changes from 0 to 1. 

 

6.14) For fixed r consider P(n) = n(n + 1)(n + 2)...(n + r -1), a product of r consecutive 
integers. Then P(n + 1) - P(n) = r x (n + 1)(n + 2)...(n + r -1) = r times the product of r - 1 
consecutive integers. In other words, we have to prove the same statement, only for the 
product of r - 1 consecutive integers. This can built inductively from r = 1.   

 

6.15) Routine using the hint given in the text. 

 

6.16) The P(k)  P(2k) step becomes  

≤ ≤ 

. 

3 5 3 5

2k k k
1 2 2k 1 2 k k 1 k 2 2ka a ... a a a ... a a a ... a        

k k
1 2 k k 1 k 2 2ka a ... a a a ... a

2

     

1 2 k k 1 k 2 2k 1 2 2k1 a a ... a a a ... a a a ... a

2 k k 2k
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6.17) The proof is almost word for word, except for trivial adjustments, as given in 

Example 6.8, following the scheme P(k)  P(2k) and then P(k)  P(k - 1). 

 

6.18) The inductive step, if one follows a casual argument, amounts to the false 

inequality  This is remedied if we prove the stronger statement 

 which leads to requiring the correct, and easily verifiable, 

inequality   

 

6.19) The strengthened inequality  is an easy 

induction exercise. 

 

6.20) The strengthened inequality  is an easy induction 

exercise. 

 

7.1) The inductive hypothesis on n can be used to show that the right hand side is a 
product of integers.  

 

7.2) For 0 ≤ x < 1/n the result is trivial. Assume now the equation is true for all x with k/n 
≤ x < (k+1)/n and let y be an arbitrary number with  (k+1)/n ≤ y < (k+2)/n. We are to 
prove the stated identity for y. For this apply the hypothesis to x = y – 1/n. We will obtain 
the required sum for y except for the end terms, but these can be adjusted using [a + 1] 
= [a] + 1.  Negative x can be sorted similarly.  

 

7.3) For the inductive step argue as follows: Given k+1 stations it is clear (by the original 
assumption) that there is station, call it A, whose gasoline will take the car to the next 
station moving, say, clockwise. If we carry the gasoline of station A to the next station, 
we will have k stations and so, by the inductive hypothesis, the circuit can be completed. 
Suppose this method of completing the circuit starts from station B and moves 
clockwise. It is now clear that if we return the gasoline back to station A, the circuit can 
also be completed clockwise starting from B, and collecting the gasoline from A as we 
pass along.  

 

8.1) For the inductive step observe that if n2 + n < k  (n + 1)2 + (n + 1) then n2 + n  + ¼ 
< k < (n + 1)2 + (n + 1) + ¼  (the first inequality is valid because k is an integer greater 

2

2

(2k 1) 3k
.

(2k 2) 3k 3




 
2 2 2

2 2 2

1 3 (2n 1) 1
... ,

2 4 (2n) 3n 1


   


2

2

(2k 1) 3k 1
.

(2k 2) 3k 4

 


 

1 1 1 2
... 2

2 1 3 2 (n 1) n n 1
    

 

3 3 3

1 1 1 1
(1 )(1 ) ... (1 ) 3

2 3 n n
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than the integer n2 + n ). Thus (n + ½ )2 < k < (n + 1 + ½ )2 and so { } = n + 1, from 

which it follows that the contribution of the new terms in the sum is 

 as needed.  

 

8.2) The case n = 1 is clear. Assume that for n = k we need at least k + 1 lines to cover 
the lattice points described. Then for n = k + 1 we have a) if one of the straight lines is x 
+ y = k + 1, then we need, by hypothesis, at least k + 1 lines to cover the rest of the 
points. Total: k + 2. b) If, on the other hand, the line x + y = k + 1 is not included, then the 
k + 2 lattice points on it require at least k + 2 other lines to be covered.   

 

8.3) First note that if N ≥ 999 then N – 1 ≥ s(N) because N – s(N) = 

 ≥ 1.(102 – 9) + 9.(1 – 9) > 0. Suppose now that repeated 

application of s on each k with k ≤ n (where n ≥ 999) eventually comes to 1 or the cycle 
mentioned. Then for n+1 we have n ≥ s(n + 1). Hence repeated application of s to s(n + 
1) behaves as claimed.  

 

8.4) The first few terms of the sequence are 1, 1, 1, 2, 3, 7, 11, 26, 41, ... One may 

suspect that this sequence also satisfies the recurrence an+2 = 4an - an-2 (n  1). This in 
itself is easy to verify inductively from the given relation: an+3 = (1 + an+1an+2 )/an =  

[1 + an+1(4an - an-2)]/an = 4 an+1 + (1 - an+1an-2)/ an = 4 an+1 + [1 - (1 + anan-1)]/ an =  

4 an+1 - an-1 . The fact now that (an) consists of integers is clear for the new recurrence.  

 

8.5) Make m the subject of induction. For the inductive step, in am
 = where n if 

fixed, we have 

  . 

Note that the first part of the numerator is the product of n-1 consecutive terms, so it is a 
multiple of the denominator (this can be proved in a number of ways, including 
inductively). 

 

8.6) The validity of the inductive step, from n = m to n = m + 1, amounts to showing that  

am+1(b1 + b2 + ... + bm) + bm+1(a1 + a2 + ... + am)  

                                                   ≤ (a1b1 + a2 b2 + ... + ambm) + (m+1) am+1 am+1 . 

This follows by summing k from 1 to m the easily verified inequalities  

                                     am+1 bk  +   ak bm+1    ≤   am+1 bm+1  +   ak bk   (1 ≤ k ≤ m).  

k

2

2

(n 1) (n 1)
2 2 2

k n n 1

{ k} (n 1)[(n 1) (n 1) (n n)] 2(n 1) ,
  

  

        

n
k

k k 0 0

k 1

a (10 a ) a (1 a )


  

m

(mn)!
,

m!(n!)

m 1

m

a (mn 1)(mn 2)...(mn)...(mn n) (mn 1)(mn 2)...(mn)...(mn n 1)

a (m 1)n! (n 1)!
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The corresponding inequality when the sequences (an ), (bn) are increasing simply the 
Chebychev inequality reversed. The proof of this is identical to the previous except for 
reversing the "≤".          

 

8.7) Let Sn = {x1, x2, ... , xn} (nN). An arrangement of the subsets of S1 as required, is  ∅, 
{x1}, {x1, x2}, {x2}. For the induction step, assume that the subsets of Sn are arranged as 

required, labelled as ∅ = A1 , A2 , ... , A2
n
.  The following labeling of the 2

n+1 subsets of Sn+1  

is easily seen to be suitable: 

∅ = A1 , A2 , ... , A2
n , {xn+1} A2

n , {xn+1} A2
n
-1

 , {xn+1} A2
n
- 2

 , ... , {xn+1} A1
 . 

 

8.8) For the induction step, with 2n + 2 points, pick any two that are joined with a 
segment. If there is a third point joined to both these two, we are done. Otherwise, the 
remaining 2n points are joined to these two with at most 2n segments (because each of 
the other points is joined to at most one of the two). Thus, the remaining 2n points are 
joined with at least (n + 1)2 - 2n = n2 + 1 segments. The result follows by our hypothesis.  

 

8.9) For the inductive step assume the conclusion true if n = k. Take now a subset A of 
{1, 2, … , 2k + 1, 2k + 2} with k + 2 elements. If 2k + 2 A then (at least) k + 1 elements 

of A are in {1, 2, … , 2k} and the conclusion follows by the inductive hypothesis. If 2k + 2 

 A then either k + 1A or k + 1 A. In the first case we are done, so assume the 

second. Consider the set B consisting of the elements of A but with 2k + 2 replaced by k 
+ 1. Note that B has (at least) k + 1 elements in {1, 2, … , 2k} (because it has k + 2 
elements in {1, 2, … , 2k + 1}). By the inductive hypothesis there exist x, y in B such that 
x | y. If x ≠ k + 1 ≠ y, we are done. Otherwise we have y = k + 1 (we cannot have x = k + 
1 because then 2k + 2 ≥ y ≥ 2x = 2k + 2, yet 2k + 2 B). But then x | 2y.            

 

8.10) For n = 2 any two points at unit distance apart would do. If for n = k there is a finite 

set Ak as described. Let be any unit vector of the plane, different from the (necessarily 

finite in number) vectors joining points of Ak. We define Ak+1 as consisting of the points in 

Ak together with the same points shifted by . It is clear that every point of Ak+1 is at 

distance 1 from k+1 points of Ak+1 (k of which are the responsibility of Ak but there is a 

new one to, due to ). 

 

8.11) For n = 2 such a matrix can be trivially written down, with 1's down the diagonal. If 
one constructs a matrix (aij) as stated for n = k, with the additional property that it has 1's 
down the diagonal, we can construct a corresponding 2kx2k matrix (bij) as follows: For 0 

 i, j  n, set a) bi,j = ai,j, b) bi+n,j+n = ai,j; c) bi,j+n = ai,j + 2n and, finally, d) bi+n,i = 2n and bi+n,j 
= ai,j + 2n for i not equal j.  

  It is easy now to check that (bij) has the required properties (and 1's down the 

diagonal). Note that this procedure constructs matrices of dimensions 2m  2m, all m.  
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INEQUALITIES  
 

Mircea Becheanu, Vasile Berinde 
ROMANIAN MATHEMATICAL SOCIETY, NORTH UNIVERSITY OF BAIA MARE 

 
  
In the first section about inequalities we presented the first principles of the theory of 
inequalities and some introductory techniques in proving inequalities. 
 
We will develop further these techniques in the present section. We begin with a 
presentation of the basic inequalities and then we give a set of problems and exercises 
with the aim of introducing the readers in a wonderful land of mathematics. Most 
techniques involved in solving the collection problems are applications and refinements 
of the methods used in proving classical basic inequalities. Sometimes, it is necessary to 
combine two or several of these methods. 
 
1.  Means Inequalities 
 

We recall that, given positive numbers  , the following functions are defined: 

 

AM (arithmetic mean):  

GM (geometric mean):  

HM (harmonic mean):  

QM (quadratic mean): .  

 
In the previous Chapter devoted to inequalities (Inequalities, Level 1), we have proved 
the following inequalities: 

, 

. 

The aim of this section is to show that the inequalities 

 

also hold, for all natural numbers . The basic step to show this, is to prove the 

following theorem which is considered to be the main result: 

1.1. Theorem. For all   and any positive numbers  the following AM-GM 

inequality holds: 

, 

and equality occurs if and only if . 

It is worth mentioning that this inequality has many proofs, based on different ideas. We 
will present here three of them. 
First proof (by standard induction)  
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We have seen that the theorem is true for  and . Assume it is true for  

arbitrary positive numbers and we show that it is true for any  positive numbers  

. 

Since the AM and GM have symmetric expressions in  one may assume that 

. Also, one may assume that . Then, the following 

inequalities hold:       

Let us denote . Then   or, equivalently, 

 .    (1) 

Let us consider the following  numbers: , . Their arithmetic 

mean is 

  (2) 

and their geometric mean is 

. 

By inequality (1), we have 

. 

By induction, . Therefore . Combining with the above inequality and (2) 

one obtains: . This proves the required result.  

It is clear by the proof that if the numbers  are not equal, then 

and 
the inequality is strict.  
Second proof (by induction up and down). 

First step is to prove by induction on , where , that . Indeed, assuming 

that , one has 

 

. 

Now, we will show that if  then . 

Let be positive numbers. We apply  to the numbers . 

Therefore, 

. 

 

Taking the  power one obtains , which proves the result. 
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To end, it is sufficient to remark that by performing an induction going-up one obtains the 

result for numbers and then by combining it with a going-down argument, 

we can cover all positive integers n 
Third proof (Ehlers). 

We prove by induction on  the following statement: if  are positive 

numbers such that then 

. 

For , it is obvious. Assume the statement is true for and let , 

. 

There are two numbers, say  such that   and .  Then 

It is convenient to write this inequality in the form 

 

Then,  

Returning to the proof, now, it is sufficient to apply Ehlers argument to the numbers 

 

1.2. Corollary. For all  and any positive  numbers the following GM-HM 

inequality holds: 

. 

Proof. One applies AM-GM inequality to the numbers , to obtain: 

. 

 
1.3. Examples. 
 

1. Let  be positive numbers and let  be a permutation of them. 

Then 

    . 

Solution. By the AM-GM  inequality applied to the numbers  we have: 

   

2. Let  be positive real numbers and  be positive rational 

numbers such that . Then 

, 

and equality occurs if and only if . 
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Solution. Assume that  where   and . Applying the 

AM-GM inequality to the numbers: 

, 

we see that 

. 

It can be written as 

. 

It is now clear by AM-GM inequality that equality requires . 

Remark. The above result has also the following variational interpretation: if  are 

given and  are real variables so that  is a constant, then the product 

attains its maximum value  when . 

 
1.3.3. For all positive integers , the following inequality holds: 

. 

Solution. We apply AM-GM inequality to the  numbers .  

We have 

 

The following example has important applications. 
 
1.3.4. For any positive integer  set 

 and . 

Then, the following inequalities hold: 

. 

 Solution. For positive numbers  and arbitrary  , by example 1.3.2 one has 

, 

 
and equality occurs if and only if . Hence, 

. 

Taking and  in the above inequality, we obtain 

, 

which shows that . 
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. 

Therefore, 

. 

Since  we obtain 

. 

This shows that , which completes the proof. 

1.4. Theorem. For all and any positive numbers  the following AM-QM 

inequality holds: 

. 

The equality holds if and only if . 

 
Proof. By squaring the inequality one obtains the equivalent form: 

. 

There are several methods to prove this. 
First method uses Cauchy-Schwarz inequality in the form (2.2.2, Inequalities, Level 1), 
see also section 2 in the present Chapter: 

. 

Equality holds if and only if . 

 
Second method is a direct proof. The left hand side of inequality is: 

. 

Then the required inequality becomes: 

.            

(3) 

The sum in the left hand side contains  terms. For each pair  with 

 we have: 

. 

By adding all these inequalities one has  

. 
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In the right hand side of the above inequality each  appears  times since it 

appears with all . Hence,  

. 

which ends the proof. 
 
2. Cauchy-Schwarz inequality 
 
2.1. Proofs of Cauchy-Schwarz inequality 
 
This inequality was already stated in (2.2.2) (Inequalities, Level 1). For all real numbers 

 and   the following Cauchy-Schwarz inequality holds 

. 

The equality occurs if and only if the numbers  and  are proportional, 

that is 

. 

In these ratios, if  then .  

There are several different proofs of this Cauchy-Schwarz inequality. 
 
First proof (Quadratic functions). 

Consider the quadratic function  defined by: 

 

. 

 

It is clear that , for all ,  and  if and only if there exists  such 

that  , for all . Writing  under the canonical form of a quadratic 

function we have: 

. 

Its discriminant is 

. 

Since  it follows that , and the result follows. 

The case of equality follows by the 
Second proof  (based on Lagrange's identity). 
 
It is clear that we can compute the difference between right hand side and left hand side 
to obtain the equality: 
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(It is called Lagrange's identity). The proof of this identity is very elementary and it 
requires only a careful computation of all members in both sides of equality. The 

product  contains terms of the form   for  and terms of the 

form  for all . Each monomial  appears twice. 

The square  can be computed as follows: 

. 

We cancel the terms  and in left hand side remain exactly the monomials which can 

be condensed in 

. 

2.2. Applications 
 

2.2.1. For any positive numbers  , the following inequality holds: 

. 

Solution.  Apply Cauchy-Schwarz inequality to the numbers , . 

Remark. This inequality can also be obtained from AM-HM inequality and from AM-GM 
as well. 

2.2.2.  For all real numbers  the following  inequality holds 

. 

This result was already proved in Theorem 1.4. A new proof can be obtained by using 

Cauchy-Schwarz applied to the numbers  . 

 
3.  Rearrangement inequality and Tchebyshev's inequality 
 
3.1. Rearrangement inequality 
 

Let   and  be sequences of real numbers. Then the 

following inequality holds: 

.         (4) 

Indeed, when subtracting the right hand side from the left hand side one obtains the 
equivalent form: 

. 

It can be written again as: 

. 
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The last inequality is obvious. 
 

The inequality (4) can be refined in the following way: if is a permutation of 

the numbers , then the double inequality holds 

.   (5) 

In other words, the sum attains its maximum value when the numbers 

 are considered is descending order and attains its minimum value when they 

are considered in ascending order. For this reason, the inequality (5) is called the 
rearrangement inequality (RI). We shall see how the inequality 

 

can be proved.  

The idea is to show that the permutation  for which  is a maximum is 

the identity permutation  . Assume that  and let be the index for which 

. Consider the permutation and compute the 

difference: 

 

. 

So, if   is a maximum, then .  

The procedure can be applied again to show that  . 

 
3.2. Tchebyshev's inequality 
 
As an application of the inequality (5) we can prove a very interesting and powerful 

inequality due to Tchebyshev: if  and  then 

 (6) 

Sometimes, this inequality is given under a form which involves arithmetical means and 
which makes it more adequate and attractive: 

 

We give one of several methods to prove (6). The left hand side is a sum of  

products 

 

which can be arranged in  sums of the form  . 


 


1 when is even

2 when is odd .

n
i

n

1 2
, ,...,

ni i ib b b

1 2, ,..., nb b b

1 21 2 1

1 1

...
n

n n

i i i i n i i n i

i i

a b a b a b a b a b
 

 

     

1
k

n

k i

k

a b




1 2, ,..., nb b b

1 1
k

n n

i i k i

i k

a b a b
 

 

1
,...,

ni ib b
1

k

n

k i

k

a b




1 2, ,..., nb b b 1 1i  ki

1ki
b b

2 1 11, ,..., , ,...,
k k k ni i i i ib b b b b b

 


2 11 1 2

1

( ... ... )
k n

n

k i i k i n i

k

a b a b a b a b a b


      

       
1 1 11 1 1 1( ) ( ) ( )( ) 0

ki k i i k ia b b a b b a a b b

1
k

n

k i

k

a b


 1 1i 

 2 2,..., ni i n

1 2 ... na a a   1 2 ... nb b b  

         1 2 1 2 1 2 2( ... )( ... ) ( ... ).n n n na a a b b b n b a b a b

     
 1 1 1 1... ... ...

.n n n na a b b a b a b

n n n
2n

1 1 , 1

n n n

i j i j

i j i j

a b a b
  

  

1
k

n

k i

k

a b






 101 

For instance, we can organize them such that the numbers are permuted 

cyclically into  ,  then an so on. Therefore 

 

 

Each bracket is dominated by   and by adding them, one obtains 

(6). 
 
3.3. Applications 
 
 3.3.1. The AM-QM inequality (from Theorem 1.4) is a particular case of Tchebyshev's 
inequality: 

. 

Indeed, since the inequality is symmetric, one may assume that . Take 

also the numbers  . It is clear that Tchebyshev's inequality 

applied to this case yields the required result. 
 
3.3.2.  For any positive real numbers  the following inequality holds: 

. 

Solution.  Assume that . It follows that  . By applying 

twice the rearrangement inequality we have: 
 
 

 

and  

 

 
By adding these inequalities one has the required result. 
 
 
3.3.3. In any acute triangle ABC, the following inequalities hold: 

   (a) 

. (b) 

Proof. Assume . Then . Apply successively the 

rearrangement inequality to the triples   and , the last numbers 

being arranged as . Summing up the obtained inequalities one has (a). 

To obtain (b), we add  to both members of (a). 

 
3.3.4.  For any positive numbers , the following inequality holds: 
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. 

This was mentioned and proved in (Inequalities, Level 1). 
A new proof can be given by using Tchebyshev's argument for ordered triples  

and . 

 
We have: 

 

. 

 
The result is now obvious. 
 

3.3.5.  Let  and  be positive real numbers such that  and 

. Then 

. 

Proof.  

 We use Tchebyshev's inequality. Assume that   and consider the 

ordered systems  

 

By Tchebyshev's inequality one has: 

 

 

 
By AM-GM  inequality 
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1. A new proof of the AM-GM inequality:  
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. 

This yields 

, 

which is precisely the AM-GM inequality. 
 
4. Bernoulli's inequality 
 
4.1. Basic Bernoulli's inequality  
 
A lot of inequalities are known as being due to Bernoulli. The basic Bernoulli's inequality 
is the following: if is a real number, and  is a positive integer, then 

.    (7) 

It can be proved by induction on . For , we have equality. Assume that 

 and multiply this by the positive number . We have: 

 

Hence, the inequality holds for all n. 
 
4.2 Refined Bernoulli's inequality 
 
The inequality (7) can be refined to several distinct numbers. Suppose that  and 

are non-zero real numbers which have all the same sign and ,  for 

all 
Then 

   (8) 

For the proof of (8) we will use induction once again. For one has: 

. 

If are all positive, by standard computations which use symmetric polynomials 

we have 

 

Therefore, the case when  remains. Assume the inequality holds for  

numbers and we want to prove it for . We have 

 

Since , it follows that . So, in all cases  and 
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4.3 Application. If  are positive numbers not greater than 1, then 
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The inequality is equivalent to  
 

. 

By Bernoulli’s inequality we have 

 

and due to inequality 2.2.2, the conclusion follows. 
 
5. Proposed problems 
 
In this section we present some inequalities under the form of proposed problems. 
Solving them requires that the reader has a good knowledge of the basic inequalities 
explained previously. 
 
5.1. An IMO problem with an unexpected solution1 
 
Let  be a fixed integer with . 
(a) Find the least constant C such that the inequality 

 

holds for all real numbers . 

(b) For this constant C, determine when equality holds. 
 
First solution. For , we have to find the maximum of the function 

 

when  and  are not simultaneously zero. 

Since the fraction defining is homogeneous of degree 0, we denote 

, such that . One obtains the function 

, 

where . After denoting , one obtains a quadratic function in one variable 

. 

The inequality is obvious and the maximum  is obtained for , 

which means that . 

In the general case, we will prove that 

. 

                                                 
1
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Denote  and . As above, we consider an auxiliary function f and prove 

that 

 

for all and . 

Since the polynomial  is symmetric we may assume that . The 

idea is to show that if  then, 

 

which requires only careful computations. 
By repeating the above argument it follows that a maximum is attained when  
variables are zero, so the problem reduces to the case . 
Second solution (due to M. Rădulescu) 
For , as in the previous solution, we have  

. 

Let us now turn to numbers. Denote . Then  and equality 

holds if and only if  for all . By applying appropriately  the AM-GM 

inequality one obtains: 
 

 

. 

The equality holds if and only if there exists a pair  such that  and , for 

. 

 
5.2. An interesting application of Cauchy-Schwarz inequality2 
 

Let n be a positive integer and let  be real numbers. 

(a) Prove that 

; 

(b) Show that equality holds if and only if  is an arithmetic progression. 

Solution.  (a) Since both sides of the inequality remain invariant under a translation on 

the real axis, we may assume that . 

Then, 
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By the Cauchy-Schwarz inequality, we have 

. 

On the other hand 
 

. 

Therefore, the required inequality yields. 

(b) If the equality holds, then  for some k, which means that is 

an arithmetic progression. 

Finally, it is easy to see that if  is an arithmetic progression, the inequality 

becomes equality. 
 

5.3. For all  and , we have 

. 

Solution 1. We use linear change of variables. 

Solution 2. Since the left hand size is a symmetric function in , we may 

assume , so that  and therefore 

. 

By Chebyshev's inequality we get 

        

(5.1) 
By using the inequality from 2.2.1 we have 

 

which gives 

 

The last inequality, together with (5.1) prove the required result. 
 

5.4. If  then 

. 

(Balkan Mathematical Olympiad). 

Solution. Similar to 5.3, but using the numbers  instead of 

. 

 

5.5. If , then 

. 
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2 2 2
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n n
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1 2 1 2,  , , 0 and 1,n na a a a a a    

1 2

1 22 2 2 2 1
n

n

a a a n

a a a n
   

   

2 2i iS a a  

, 1,2, ,iS a i n 

, , 0a b c 
3 3 3

2 2 2 2 2 2 3

a b c a b c

a ab b b bc c c ca a
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Solution. Denote  

, 

. 

Since 

 

it follows that . Using the fact that  and applying  inequalities of the form 

, 

equivalent to , one obtains the required inequality. 

 

5.6.  If  and , then 

. 

Solution. Denote 

, 

 and 

 

and, similarly to the previous problem, show that . Then use the same idea 
together with the inequalities 

. 

Another solution can be obtained by using Cauchy-Schwarz inequality, revisited under 
the form 

. 

Indeed, by using cyclic summation, one has 

 

5.7. If  and , then 

. 

 

By the Cauchy-Schwarz revisited inequality we have  ( ) 

3 3 3

2 2 2 2 2 2

a b c
A

a ab b b bc c c ca a
  

     
3 3 3

2 2 2 2 2 2

b c a
A

a ab b b bc c c ca a
  

     

3 3

2 2

a b
a b

a ab b


 

 

A B
2

A B
A




2 2 2 23( )a ab b a ab b    
2( ) 0a b 

3n 
1 2, , , 0na a a 

2 2 2

1 2
1 2

1 2 2 3 1

1
( )

2
n

n

n

a a a
a a a

a a a a a a
      

  

2 2 2

1 2

1 2 2 3 1

n

n

a a a
A

a a a a a a
   

  

22 2

32 1

1 2 2 3 1n

aa a
B

a a a a a a
   

  

A B

2 2 2

i2(a ) ( ) , 1,2, ,j i ja a a i n   









2

2

1
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i

i i
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a
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b
b





 



2
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1 2
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1

= .
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2
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i

a
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a
a a

a

3n 
1 2,  , , 0na a a 

3 3 3
2 2 21 2
1 2
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1
( )

2
n

n

n

a a a
a a a

a a a a a a
      

  

1 1na a 
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So, we have to prove the following: 

 

which is exactly the Cauchy-Schwarz inequality: 

  

 
 
 

5.8. If  and  then 

. 

Solution. It is clear that . First of all we prove that for any  the 

inequality  holds. This is obvious if we rewrite it equivalently in the form 

. The equality holds if and only if . For  the 

previous inequality is equivalent to . Now, take  in the 

last inequality, sum up these three inequalities to obtain the inequality in our problem. 
 

5.9. Let  be positive numbers such that  and . For all numbers 

 such that , the following 

inequality holds: 

. 

(This inequality is due to G. Polyá and G. Szegö) 

Solution. From ,  we obtain that 

 

which gives  

. 

This last inequality is equivalent to 

. 

By summing up these n inequalities, we obtain 

. 
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3 4

2
21 11 1

1
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n n n
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But  

 

and hence 

, 

which yields the desired inequality. 
 

5.10. For the permutation  of the numbers  and all positive numbers 

, the following inequality holds: 

. 

(A problem by Dan Seclăman, Gazeta Matematică, Bucharest) 

Solution. Using the inequalities  we deduce that the right hand 

side is at least . To prove the inequality in the problem, it suffices to show that the left 

hand side is at most . To this end, apply first  inequality to obtain  

, 

where . Now applying the rearrangement inequality we 

conclude that S attains its maximum, equal to 1, for the identity permutation, 

. The proof is complete. 

 
5.11. If  are the sides of a triangle, then 

. 

(Problem 2, IMO, 1964, proposed by Hungary) 
Solution 1. By putting 

  

we get 

  

and the inequality to be proved becomes 

  

which can be written equivalently as 

  

This last inequality is obvious by using the following AM-GM inequalities 

  

The equality holds when  

 
Solution 2. Since  are the sides of a triangle we have 

2 2 2 2
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which together with the obvious inequalities 

 

yields 

 

which is equivalent to 

 

that is 

. 

0, 0, 0b c a c a b a b c        

2 2 2( ) 0, ( ) 0, ( ) 0a b b c c a     

2 2 2( ) ( ) ( ) ( ) ( ) ( ) 0b c b c a c a c a b a b a b c           

2 2 26 2 ( ) 2 ( ) 2 ( ) 0abc a b c a b c a b c a b c         

2 2 2( ) ( ) ( ) 3a b c a b c a b c a b c abc        
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LINEAR ALGEBRA 

 
Mircea Becheanu 

ROMANIAN MATHEMATICAL SOCIETY 
 

 

The methods of Linear Algebra are also important in elementary mathematics. Some 

elementary problems often have nice and unexpectedly easy solutions when they are 

modeled upon linear behavior. In such cases, the experience of the solver plays a 

leading role. We try to illustrate this by using a collection of selected problems in this 

area. We assume that the reader has a basic knowledge in Linear Algebra like: matrices, 

determinants, systems of linear equations, rank of a matrix, vector spaces and linear 

combinations of vectors.  

 

We will present these basic problems which, in our opinion, are appropriate examples to 

illustrate our ideas.  

 

1. A well known problem. Let m, n be positive integers which are relatively prime and m 

< n. There are n players around a game table. At some moment one can see that each 

group of m consecutive players have together the same amount, say s.Find the exact 

amount of each player.  

 

Solution.  

Let x1,x2,...,xn denote the amount of the player 1, 2,...,n, respectively. The condition given 

in the statement of the problem turns into the following equalities:  

1 2 mx x x s     

2 3 1mx x x s     

……… 

1 2n n mx x x s      

1 1n mx x x s     

 

This is a system of n linear equations which is satisfied by the numbers x1,x2,...,xn. 
Because it is a square system, the general principles of Linear Algebra invite us to use 
Cramer’s rule. So, we check informations about the determinant of the system, which is,  
 
 

1 1 … 1 0 … 0 
0 1 … 1 1 … 0 
… … … … … … … 
0 0 … 1 1 … 1 
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 =  
 
 
 

It is not obvious how to compute this determinant or even to see whether Δ ≠ 0. 

Therefore it is not recommended to answer the problem by straightly solving the system.  

 

A better attempt is to look carefully at the form of the system equations. It is easy to see 

that  

1 2 n

s
x x x

m
     

 

is a solution of the system. We will show that this solution is unique. To simplify the task, 

it is sufficient to show that the corresponding homogeneous system  

1

0
k m

i

i k

x
 



  1,...,k n   

 

has only the trivial solution: 
1 2 3 0nx x x x      (here the indexes of the variables 

are taken modulo n, that 
1,i nx x  etc.). To present clearly our method we start with a 

particular case, say m = 3 and n = 10. Then we have the equations:  

 

1 2 3

2 3 4

10 1 2

0

0

.........................

0

x x x

x x x

x x x

  

  

  

 

 

By adding the 10 equations and dividing the sum by 3 we obtain the sum:  

1 2 10 0x x x     

In this sum we group together three consecutive variables and obtain:  

   1 2 3 7 8 9 10 0x x x x x x x         

It follows that x10 =0.  

The long summation can be permuted in a cyclic way, which yields  

1 0 … 0 1 … 1 
… … … … … … … 
1 1 … 0 0 … 1 
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2 3 10 1 0x x x x      

 

and using the same method we obtain x1 = 0. It is now clear how we can obtain that all 
variables are zero.  

 

For the general case, by adding the equations of the system, like in the example, we 
obtain the long summation  

 

1 2 0nx x x     

 

and 1 1 0k k k mx x x       for all k =1, 2,...,n. 

 

Let us consider Euclid’s algorithm for the numbers n and m:  

 

1 1

1 2 2

;

;

n mq r

m r q r

 

 

1

2 1

0

0

r m

r r

 

 
 

 

2 1

1 1

;p p p p

p p p

r r q r

r r q

 

 

 



10 p pr r  
 

 
Since we have assumed m and n to be relatively prime, we know that  
rp = g.c.d(m, n)=1.  
 
In the long summation we group successively m consecutive variables whose sum is 
zero. One obtains q1 groups and there are remaining the last r1 variables whose sum is 
zero. By cyclic permutations in the long summation, like in the example above, one 
obtains that the sum of any r1 consecutive variables is zero (the index of variables being 
taken modulo n).  
 
The procedure can be repeated by taking in any sum of m consecutive variables q2 
groups of r1 variables and one obtains that the sum of r2 consecutive variables is zero. 
Finally, because rp =1, one gets that each variable is zero.  
 

 

2. An IMO Problem with a past in older competitions. The next problem was proposed as 

a contest problem in 19
th 

I.M.O, 1979. For many years after it was considered as a 

significant example about “what an IMO problem is”! The statement of the problem is:  

 

Problem. Find the maximum length (number of terms) of a sequence x1,x2,...,xn of real 

numbers such that the sum of any seven consecutive terms is negative and the sum of 
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any eleven consecutive terms is positive.  

 

Before we solve the problem we invite the reader to compare it with the following 

Russian olympiad problems (1969):  

 

Problem 1.(8
th

Grade). Is it possible to write in a row 20 numbers such that the sum of 

any three consecutive numbers is positive and the sum of all numbers is negative?  

 

Problem 2.(9
th

Grade). Is it possible to write in a row 50 real numbers such that the sum 

of any 17 consecutive numbers is positive and the sum of any 10 consecutive numbers 

is negative? The following solution will show that in all three cases we have essentially 

the same problem.  

 

Solution. It is easy to see that n < 77. Indeed, in the sequence  

x1,x2,...,x7,...,x11,...,x77  

 

one may form 11 groups of seven consecutive terms and 7 groups of eleven consecutive 

terms. It follows that the sum of all terms is both positive and negative, which is a 

contradiction.  

 

 

A finer argument shows that n < 17. Indeed, starting with a sequence x1,x2,...,x17, one 

may construct the following matrix:  

 

 

x1      x2     ...      x7 

x2        x3     ...      x8 

    
x11     x12    ...      x17 

Taking the sum of the entries in the rows one obtains that the sum of the elements of the 

matrix is negative. Taking the sum of the entries in the columns one find that the sum of 

the elements of the matrix is negative. Again we get a contradiction!  

 

We will show that there exist 16 numbers such that the sequence  

 
x1, x2,...,x16 

 

satisfies the conditions. During the IMO, the official solution just stated that the following 

sequence works:  

 

5, 5, -13, 5, 5, 5, -13, 5, 5, -13, 5, 5, 5, -13, 5, 5. 

Without giving a mathematical argument about how it appears we are far from 
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considering it is a complete solution. In the following we will give two complete solutions. 

Until some point they are identical.  

 

The conditions of the problem can be written in to the following 16 16 square system of 

linear equations:  

1 2 7 1x x x a     

 

10 11 16 10x x x a     

1 2 3 11 1x x x x b     

 

6 7 8 16 6x x x x b     

 

where a1,a2,...,a10 > 0 and b1,b2,...,b6 < 0 are suitable real numbers. Therefore, the 

problem is transformed into the following: “are there positive numbers a1,...,a10 and 

negative numbers b1,...,b6 such that the system has a solution?”  

 

Solution 1. The most favorable situation is when the determinant of the system is not 

zero. The experts can immediately recognize that in our case the determinant is the 

classical resultant R(Φ7, Φ11) of the polynomials  

16 5

7

10 9

11

1

1

X X X

X X X





    

    
 

 

which are the cyclotomic polynomials of degree 7 and 11, respectively. Since these 

polynomials have no common roots it follows that R(Φ7, Φ11) ≠ 0., so the system has a 

unique solution for any choice of the numbers a1,a2,...,a10 and b1,b2,...,b6.  

 

The above solution uses some advanced theoretical background, like the theory of 

resultant of two polynomials. It is interesting to remark that the problem has also an 

elementary solution.  

 
Solution 2. Denote yk = x1 + x2 +…+ xk for all k =1, 2,..., 16. The new variables  

y1,y2,...,y16 are connected to former variables x1,x2,...,x16 through a non singular linear 

transformation given by the following triangular matrix:  
1   0     0     …    0   x1  y1 
1   1     0     …    0   x1  y2 
1   1     1     …    0   x1 = y3 

                         
1   1     1     …    1   x1  y4 
 
 
 
Therefore, it is suffcient to find y1,y2,...,y16 such that the following inequalities hold:  
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7

8 1 9 2 10 3 11 4 16 9

11 12 1 13 2 16 5

y  < 0; y  - y  < 0; y  - y  < 0; y  - y  < 0; y  - y  < 0; ... ; y  - y  < 0, 

y  > 0; y  - y  > 0; y  - y  > 0; ... ; y  - y  > 0 . 

Here there are 16 inequalities in all. They can be arranged in the following increasing 

sequence of inequalities:  

10 3 14 7 11 4 15 8 1 12 5 16 9 2 13 6y < y < y < y < 0 < y < y < y < y < y < y < y < y < y < y < y < y .  

The conclusion is: by taking the numbers y1,y2,...,y16 in that order, one may find the 

numbers x1,x2,...,x16 which satisfy the conditions required by the problem. And this task 

can be easily fulfiled.  

 

3. Linearity has unexpected applications. The next problem comes from the 40
th 

Russian Olympiad,1988. The statement of the problem has no connection with linearity 

at all. For any real number x and any sequence  

a = (a1,a2,...,an) 
n

 

denote 

   1 2, , ,x nT a a x a x a x     

In this way, one obtains a transformation  

 

: ,n n

x

x

T

a T a




 

 

(i) Show that for any 
na there exists a finite sequence of transformations of this type 

which, by applying them successively, map a into the zero-sequence  
0 = (0, 0,..., 0).  
 
(ii) Find the smallest number of transformations which are necessary to transform an 
arbitrary sequence into 0 = (0, 0,..., 0).  
 

Solution. In the first part we will present the strategy how can we map a sequence into 

the zero sequence. First, let us remark that if the composition 
1kT T maps a in 0 then 

 1 1k a
T T

has all its components equal. Another useful remark is the following: if a 

sequence a has some components equal, then  xT a has the same property.  

 

As a consequence of these remarks we create the following strategy: find 

transformations which produce equal components. To begin, choose 1 2
1

2

a a
x


 Then 

1x
T transforms a = (a1,a2,...,an) into b = (b1,b2,...,bn), where  
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1 2 1 2 1 2
1 1 1 1 2 2

2 2 2

a a a a a a
b a x a a b

  
         

 

In the same way, choose 2 3
2

2

b b
x


 . Then, one gets  

2 1x xT T a c , where  

c1 = c2 = c3. Therefore, after such n – 1 transformations one obtains a sequence whose 

terms are all equal and after n transformations the result is a sequence with all 

components zero.  

 

For the second part of the problem we will prove that the smallest number of 

transformations necessary to map an arbitrary sequence into 0 is n. To do this it is 

sufficient to show that there exists a sequence a which can not be mapped into 0 by only 

n – 1 transformations. This sequence is fn = (1!, 2!,...,n!). The proof of the last statement 

will be given by induction on  
n. We need the following lemma:  
 

Lemma 1. Assume that the composition of transformations 
1, ,x xkT T

 
maps the 

sequence a = (a1,a2,...,an) into 0 and that it contains a transformation
ixT such that xi is 

not greater than any component c1,c2,...,cn of the sequence  1 1, ,xi xT T a
 = 

(c1,c2,...,cn). Then the number k of transformations can be minimized.  
 

Proof of Lemma 1. Since 
j ic x for all j =1,2,...,,n we have the equalities:  

 1 1 ,j i i j i ic x x c x x       

for all j ≥ 1. They can be translated into the following equality of composition of 

transformations:  

 

1 1i i i k i i ix k x x x x x x xT T T T T T T     

. 
This ends the proof of Lemma.  

Going back to the problem, it is clear that the sequence f1 can be mapped into 0 by one 

transformation. Assume that the sequence fn can be mapped into zero by not less than n 

transformations and suppose by contradiction that the sequence fn+1 is mapped into 0 by 

n transformations. Then, the same transformations map the first its n components into 0. 

These components are 1!, 2!,...,n!, that is the sequence fn.  

 

By the induction assumption about the sequence fn it follows that 1 ≤ x1 ≤ n!, and in each 

of the next steps the numbers x2,...,xn are not greater than the greatest of the component 
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which appear. Hence, we have  

       1 2 1 21 ! 1 ! 1 ! . ! 0,nn x x x n x x x n n n n                

 

which is a contradiction.  

 

Remarking the ingenuity of the last argument, we will give an alternative but more 

natural proof for the second part of the problem. In a very unexpected way, Linear 

Algebra will be helpful.  

 

Assume by contradiction that for every sequence a = (a1,a2,...,an) there exist n -1 

transformations 
1 1, ,

nx xT T
 

such that  

 
1 1 0

nx xT T a


  

for all sequences a. This is equivalent with the following statement: for every real 

numbers a1,a2,...,an there exist n - 1 numbers x1,...,xn-1 and there exist suitable  

n x (n - 1) numbers  1, 1 ,1 ,1 1ij i n j n         , such that the following equalities 

hold:  

11 1 12 2 1 1 1 1

21 1 22 2 2 1 1 2

1 1 2 2 1 1

n n

n n

n n nn n n

x x x a

x x x a

x x x a

  

  

  

 

 

 

   

   

   

 

 

This is a system of n linear equations in n - 1 variables whose entries are in the set 

 1, 1  In the language of geometry, x1,...,xn-1 is a solution of the system if and only if 

the vector a = (a1,a2,...,an) lies in the subspace of 
n
spanned by the  

n - 1 columns of the matrix of the system. The number of the systems of this kind is 

finite. Therefore, the result obtained above can be restated as follows: every vector 
na lies in a finite union of subspaces of dimension at most n - 1. This is impossible, 

as it follows from the following lemma:  

Lemma 2. The linear space 
n

 

can not be represented as a finite union 

1

n

mV V of subspaces of dimension n – 1  

 

Proof of the Lemma 2. Every subspace Vi of dimension n – 1 is the set of solutions of a 

non-zero linear form  
1

0
n

i k kk
F x a x


  . The polynomials Fk are not zero, so that the 

polynomial    
1

m

kk
F x F x


 is no zero. It is easy to see by induction on the number n 
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of variables that a non zero real polynomial can not vanish on the whole space 
n
. This 

ends the proof.  
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NUMBER THEORY  
 

Jenő Szigeti 
University of Miskolc 

 
 
1. DIVISIBILITY 
     
We state four fundamental results concerning divisibility, without proofs. Let φ(n) denote 
the number of elements in {1, 2, ..., n} relative prime to n. For example if p ≥ 2 is a prime 
number, then φ(p) = p – 1. 
     

1.1. Theorem (Euler). Let a ∈ ℤ be an integer relative prime to n. Then aφ(n) – 1 is 

divisible by n: 
 

n | aφ(n) – 1 
     

1.2. Theorem (Fermat). Let a ∈ ℤ be an integer not divisible by a given prime number p.  

Then a p–1–1 is divisible by p: 
 

p∣ap–1 – 1. 

 
      
1.3. Theorem (Wilson). If p ≥ 2 is a prime number, then (p –1)!+1 is divisible by p: 
 

p∣(p – 1)! + 1 

 
     

1.4. Theorem (Chinese Remainder). If a1, a2, ..., an ∈ ℤ and r1, r2, ..., rn ∈ ℤ are integers 

such that gcd(ai, aj) = 1 for all 1 ≤ i < j ≤ n, then there exists an integer b ∈ ℤ with the 

property that ai∣b – ri  for all 1 ≤  i ≤  n. 

     

1.5. Example. Prove that 5n |2k – 1 if k = 5n – 5n–1 and 5n ∤ 2k – 1 if 1 ≤ k < 5n–5n−1 

 
Solution. Since φ(5n) = 5n − 5n−1 = 4 ∙ 5n–1 the application of Euler's theorem gives that  

5n | . We proceed by induction. For n = 1 and k = 51-50 = 4 we have 5 | 24−1 = 

15, moreover for 1 ≤ k < 51-50 = 4 it is easy to see that 5 ∤ 2k−1. Assume that our 

statement is valid for n and fails to hold for n + 1.  
Let 1 ≤ k < 5n+1-5n be the smallest k with 5n+1 | 2k−1. Now 4 ∙ 5n=5n+1–5n = kq + r,  
where 0 ≤ r ≤ k – 1 is the reminder of the division by k. If r ≥ 1 then 

 

and 2k–1 | (2k)q–1 would imply that 5n+1 | 2r–1 in contradiction with the choice of k. Thus 
we have r = 0, i.e. that 4 ∙ 5n = kq. We claim that 4 ∙ 5n–1  is a divisor of k. Let k = 4 ∙ 5n–1t 
+ m, where 0 ≤ m < 4 ∙ 5n–1 = 5n – 5n–1 is the reminder of the division by 4 ∙ 5n–1 . If m ≥ 1 
then 
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and  would imply that 5n | 2m – 1 in contradiction with our 

hypothesis on n. Thus we have m = 0, i.e. that k = 4 ∙ 5n–1 t. In view of 4 ∙ 5n = kq = 4 ∙ 5n–

1 tq, we deduce that t = 1 or t = 5. The case t = 1 is impossible because of 5n+1 ∤

.  

The case t = 5 is also impossible because of k = 4 ∙ 5n ≮ 5n+1−5n. We only have to show 

that 5n+1 ∤ . Now  and 5n ∤  follows from our 

hypothesis on n. In consequence, we get that , where 5 ∤ s. Thus 

 

 

 is not divisible by 5n+1. 
 

1.6. Example. Prove that , where p = 4k+1 is a prime number. 

 
Solution. We have p | (p-1)! +1=1 ∙ 2 ∙ … ∙ (2k) ∙ (2k+1) ∙ … ∙ (p–1) + 1 by Wilson's 
theorem. Since 

1∙2∙…∙(2k) ∙(2k+1) ∙…∙(p–1) + 1 = 1∙2∙…∙(2k) ∙(p–2k) ∙(p–(2k–1)) ∙…∙(p–1)+1= 
          = [(2k)!]2 + pw + 1, 

for some integer w, we obtain the desired divisibility. 
     
1.7. Example. Prove that p = x2 + y2 has an integer solution (x, y), where p = 4k + 1 is a 
prime number. 
     
Solution. If mp = x2 + y2 is solvable for some 2 ≤ m < p (this is our case by Example 

1.6), then we prove that np = x2 + y2 is also solvable for some 1 ≤ n ≤ . If m is even, 

then 

, 

where  and  are integers. If m is odd, then we have 

x = mr + x1 and y = ms + y1 

for some integers |x1| <  and |y1| < . Now 

 

implies that  for some n ≥ 1 (n = 0 is impossible, because of mp = x2 +y2 is 

not divisible by m2). Using |x1| <  and |y1| < , we obtain that 
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whence n <  can be derived. In order to see that np = x2 +y2 is solvable consider the 

following 

, 

where 

 

and 

. 

Thus we have 

. 

 

An iterated application of the above descending argument (replacing m by ) finally 

gives that p = x2 +y2  is solvable. 
     
1.8. Problem. Prove the following 
 (1) 100 | 1110 – 1 
 (2) 13 | 270 + 370 
 (3) 11 ∙ 31 ∙ 61 | 2015 – 1 
 (4) 7 | 22225555 + 55552222 
 (5) 35 | 36n – 26n 
 (6) 56486730 | mn(m60 – n60) 
 (7) 169 | 33n+3 – 26n – 27 

 (8)  

 
Hints. 
 (1) 1110 – 1 = (11 – 1)(119 + 118 + … + 11 + 1) 
 (2) 13 | 212 – 1 implies 13 | 260 – 1 and 13 | 25 – 6 implies 13 | 210 + 3. Thus we 

have  13 | 270 + 3. On the other hand 13 | 33 – 1 implies 13 | 369 – 1 and 13 | 
370 – 3. 

 (3)  11 | 25 + 1 and 11 | 105 + 1 imply 11 | 205 – 1 and 11 | 2015 – 1. 31 | 203 – 2 
implies 31 | 2015 – 25, whence 31 | 2015 – 1 follows. 61 | 34 – 20 implies 61 | 
360 – 20 and using 61 | 360 – 1 we get 61 | 2015 – 1.  

 (4)  22225555 + 55552222=(22225555 + 45555) + (55552222 – 42222) – (45555–42222),  
  45555 – 42222 = 42222 (43333 – 1), 43333 – 1 =641111 – 1 and 7 | 2222 + 4, 7| 5555 – 
4,  
  7 | 64 – 1. 
 (5) 33 + 23 | 36 – 26 and 36 – 26 | 36n – 26n . 
 (6) 56786730 = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 11 ∙ 13 ∙ 31 ∙ 61 and use Fermat's theorem. 
 (7) Apply induction: (33(n+1)+3 – 26(n+1) – 27) – (33n+3 – 26n – 27) = 26(33n+3 – 1)  
and 
  13 | 33 – 1. 

 (8) 18 | 26k+2 – 4 implies  and 19 | 218 – 1. 
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1.9. Problem. The last four digits of a square number are equal. Find this digit. 
     
Hint. The last digit of a square can only be 0, 1, 4, 5, 6 and 9. However the last two 
digits of a square can not be 11, 55, 66 and 99 (divide by 4). Of the remaining cases 
note that the last four digits can not be 4444 (divide by 16). So the only possibility is 
0000 which comes, for example, from 1002. 
     
1.10. Problem. Prove that (n!)(n-1)! is a divisor of (n!)! . 
   
Hint. Use that n! | (t + 1)(t + 2)…(t + n). 
 
1.11. Problem. Let m ≥ 1 be an integer number. Prove that any even number can be 
represented as a difference of two integers being relative prime to m. 
 
Hint. Let 2k be the given even number and let p1, p2, …, pr be the prime factors of m. For 
each index 1 ≤ i ≤ r there exists an integer xi such that f(xi) = xi(xi + 2k) is not divisible by 
pi. The Chinese Reminder theorem ensures the existence of an integer x with pi | x – xi 

for all i. It follows that pi | f(x) – f(xi) and pi ∤ f(x) for all i (here f(x) = x(x + 2k) ). Thus 2k = 

(x + 2k) – x is a representation. 
     
 
 
2. THE LINEAR EQUATION ax + by = c 
     
2.1. Theorem. Let a,b,c be non zero integer numbers. Then the following are equivalent: 
 (1) There exist integer numbers x and y such that ax + by = c holds. 
 (2) The greatest common divisor of a and b is a divisor of c, namely gcd(a, b) | c. 
 
If (x0,y0) is an arbitrary solution of ax + by = c, then any other solution (x, y) can be 
obtained as 

x = x0+ b0t and y = y0 – a0t, 
where t is an integer and a0 = a/gcd(a,b) and b0 = b/gcd(a, b).  
     
Proof. Let d = gcd(a, b). 

(1)⇒(2) Now d | a and d | b imply d | ax and d | by, whence d | ax + by can be derived. 

Thus we have d | c. 

(2)⇒(1) Now c0 = c/d is an integer number and ax + by = c is equivalent to a0x + b0y = 

c0, where gcd(a0, b0) = 1. As we have already seen in a lemma (using the Euclidean 
algorithm) gcd(a0,b0) = 1 implies that a0x′ + b0y′ = 1 holds for some pair (x′,y′) of integers. 
Clearly, (x′,y′) will be a solution of ax + by  = d and (c0x′,c0y′) will be a solution of ax + by 
= c. 
In order to produce all of the solutions (x, y) of ax + by = c from ax0 + by0 = c consider the 
following 

ax + by = ax0 + by0 . 
First a(x – x0) = b(y0 – y) and next a0(x – x0) = b0(y0 – y) can be obtained from the above 
equation. Since gcd(a0, b0) = 1, we deduce that b0 | x – x0 i.e. that x – x0 = b0t holds for 
some integer t. Now a0b0t = b0(y0 – y) implies that y0 – y = a0t. Thus we have x = x0 + b0t 
and  
y = y0 – a0t. It is easy to check, that for any choice of the integer t, the pair (x0 + b0t, y0 – 
a0t) is a solution of ax + by = c. 
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2.2. Example. Find the (integer) solutions of the equation 354x + 138y = 12. 
     
Solution. Now gcd(354, 138) = 6 and 354 = 6 ∙ 59, 138 = 6 ∙ 23, 12 = 6 ∙ 2. As 6 | 12, 
the equation is solvable in integer numbers. It is enough to deal with 59x + 23y = 2, 
where gcd(59, 23) = 1. First we solve 59x + 23y = 1 by using the Euclidean algorithm for  
the pair (59, 23). The steps are the following: 
 

59 = 2 ∙ 23 + 13 , 23 = 1 ∙ 13 + 10 , 13 = 1 ∙ 10 + 3 , 10 = 3 ∙ 3 + 1 , 3 = 3 ∙ 1 + 0. 
 
 We obtain the following expressions for the consecutive remainders: 
 
 13 =  59 – 23 ∙ 2 = 59 ∙ 1 + 23 ∙ (–2), 
 10 =  23 – 13 ∙ 1 = 23 – (59 ∙ 1 + 23 ∙ (–2)) = 59 ∙ (–1) + 23 ∙ 3, 
 3 =  13 – 10 ∙ 1 = (59 ∙ 1 + 23 ∙ (–2)) – (59 ∙ (–1) + 23 ∙ 3) = 59 ∙ 2 + 23 ∙ (–5) 
 1 =  10 – 3 ∙ 3 = (59 ∙ (–1) + 23 ∙ 3) – (59 ∙ 2 + 23 ∙ (–5)) ∙ 3 = 59 ∙ (–7) + 23 ∙ 18. 
 
Thus x′ = –7 and y′ = 18 is a solution of 59x + 23y = 1. Clearly, x0 = (–7)∙2 = –14 and  
y0 = 18 ∙ 2 = 36 is a solution of 59x + 23y = 2. Using Theorem 2.1, we obtain all of the 
solutions of 59x + 23y = 2 as 
 

(–14 + 23t, 36 – 59t), 
 
where t is an arbitrary integer number. 
 
2.3. Example. Find the (integer) solutions of the equation 35x + 15y + 21z = 8. 
     
Solution. An equivalent form of the equation is 5(7x + 3y) + 21z = 8. First we  
solve 5u + 21z = 8. It is easy to see that u′ = – 4 and z′ = 1 is a solution of 5u + 21z = 1, 
it follows that (–32, 8) is a solution of 5u + 21z = 8. The use of our theorem gives that the 

solutions of 5u + 21z = 8 can be written as (–32 + 21t, 8 – 5t), t ∈ ℤ. Now 5(7x + 3y) + 

21z = 8 holds for the integers x, y, z if and only if 7x + 3y = –32 + 21t and z = 8 – 5t for 
some  
integer t. The only remaining problem is to find the solutions of 7x + 3y = –32 + 21t for all 
t. The pair (1, –2) is a solution of 7x + 3y = 1, thus (–32 + 21t, 64 – 42t) is a solution of  
7x + 3y = –32 + 21t. By Theorem 2.1, the general solution is of the form 
 

x = –32 + 21t + 3s and y = 64 – 42t – 7s, 
 
where s is an arbitrary integer. In consequence (x, y, z) is a solution of 35x + 15y + 21z = 
8 if and only if we can find integers t and s such that 
 

(x, y, z) = (–32 + 21t + 3s, 64 – 42t - 7s, 8 – 5t). 
 
     
2.4. Problem. Find the (integer) solutions of the following system of linear equations 
 
3x + 2y – 7z = 5 , 2x – 5y + 9z = 2. 
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3. NON LINEAR DIOPHANTINE EQUATIONS 
     
3.1. Theorem. Let x, y, z be positive (non zero) integer numbers and x = dx1 ,y = dy1 ,z = 
dz1 , with d = gcd(x, y, z) > 0. Then we have x2 + y2 = z2 if and only if (1) or (2) holds. 
 
 (1) x1 = u2 – v2 , y1 = 2uv and z1 = u2 + v2 for some integers u > v ≥ 1  
  with gcd(u, v) = 1. 
 (2) x1 = 2uv, y1 = u2 – v2 and z1 = u2 + v2 for some integers u > v  ≥ 1  
  with gcd(u, v) = 1. 
 

Proof. x2 + y2 = z2 can be written as , thus we can cancel by d2 . 

Now gcd(x1, y1) = 1, gcd(x1, z1) = 1, gcd(y1, z1) = 1. We claim first that exactly one of  x1 
and y1 is even. Indeed, the condition gcd(x1, y1) = 1 shows that at most one of  x1 and y1 
is even. On the other hand if both x1 and y1 where odd, x1 = 2k + 1 and y1 = 2l + 1, we 
would have  
 

                                                                            (*) 

 

so that  and hence z1 is even. But then 4 | , which contradicts (*). This completes 

the argument that exactly one of  x1,  y1 is even.  
Suppose that y1 = 2l is even, so that x1, and hence z1 as well, are odd numbers. Now 
 

 

 
implies that 
 

. 

 
Since 
 

,  

 
and gcd(x1, y1) = 1, we obtain that 
 

 

 

The product of two relatively prime integer numbers  and  is a square 

number, it follows that each factor is a square, i.e. that 
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hold for some integers u > v ≥ 1, where gcd(u, v) = 1. In view of the above equations, 
first we deduce that 
 

u2 – v2 = x1 and u2 + v2 = z1 
 
and then 
 

 

 
gives that y1 = 2uv. The case when x1 is even can be treated similarly and will provide 
the situation described in (2). 
Finally we note that 
 

 

 
is an identity. 
     
3.2. Example. Find the (integer) solutions of the equation 12x2 + y2 = z2 . 
     
Solution. We are interested in the non negative solutions. Cancel by d2 with d = gcd(x, 

y, z) and let  be the resulting equation. Now y1 and z1 are of the same 

parity, moreover gcd(x1, y1, z1) = 1. Clearly, 
 

 

 

and take . Then we have either 

 

and  

 
or 
 

and  

 
for some relatively prime integers u ≥ 0 and v ≥ 0. In the first and second cases we 
obtain that 
 

, ,  

 
and 
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respectively. Since δ | x1 , δ | y1 and δ | z1 in both cases, we get that δ = 1. The non 
negative solutions are 
 

x1 = uv , y1 = |3u2 –v2| , z1 = 3u2 + v2 . 
 
3.3. Theorem. If (x, y, z) is an integer solution of x4 + y4 = z2 then x = 0 or y = 0. 
     
Proof. Let x ≥ 1, y ≥ 1, z ≥ 1 and (x, y, z) be a solution such that z is the smallest 
possible. Without loss of generality gcd(x, y) = 1 can be assumed. We can apply 
Theorem 3.1 to get 
 

x2 = 2uv , y2 = u2 – v2 and z = u2 + v2 
 
for some integers u > d ≥ 1 with gcd(u, v) = 1. In view of x2 = 2uv, we get that one of u 
and v is even (the other one is odd). If u = 2k and v = 2l + 1 then y2 = u2 – v2 = 4(k2 – l2 – 
l) – 1, a contradiction. Hence v = 2l and x2 = 4ul, whence we obtain 
 

 

 

Since gcd(u, l) = 1, we can write that  and  for some integers z1 and v1. Now 

 and z1 is odd. We can rewrite y2 = u2 – v2 as follows 

 

, 

 

where . The repeated application of Theorem 3.1 gives that 

 

 ,  ,  

 

for some integers u2 > v2 ≥ 1 with gcd(u2, v2) = 1. Now  implies that  

and  for some relatively prime integers x1 and y1. We can rewrite  as 

follows 
 

 

 

Now (x1, y1, z1) is a solution, where  in contradiction with the 

choice of z. 
     
3.4. Example. Find the (integer) solutions of the equation 2x6 + 3y6 = z6. 
     
Solution. Let (x,y) ≠ (0,0). Without loss of generality we can assume that one of x and y 
is not divisible by 7 (otherwise we can cancel by 76). We distinguish three cases 
according to whether 7 divides one or none of x and  y . 

-  If 7 ∤ x and 7 ∤ y then  7 | 2(x6 – 1) + 3(y6 – 1) = z6 – 5 by Fermat's theorem. Since 7 | z 
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7 | z6 – 1, we obtain that z6 – 5 can not be divisible by 7, a contradiction.  

- If 7 | x and 7 ∤ y then 7 | 2x6 + 3(y6 –1) = z6 – 3. Since 7 | z or 7 | z6 – 1, we obtain that 

z6 – 3 can not be divisible by 7, a contradiction.  

- If 7 ∤ x and 7 | y then 7 | 2(x6 – 1) + 3y6 = z6 –2. Since 7 | z or 7 | z6 – 1, we obtain that 

z6 –2 can not be divisible by 7, another contradiction.  
Thus the only solution is x = y = z = 0. 
     
One of the most important results in the general theory of Diophantine equations is the 
following. 
     

3.5. Theorem (Roth, 1955). Let a0, a1, …,an, bij ∈ ℤ (0 ≤ i, j) be integer numbers such 

that the polynomial f(x) = a0 + a1x + … + anx
n is irreducible over ℤ. If n ≥ 3, then the 

following equation has only a finite number of integer solutions 
 

 

 

3.6. Example. The number of pairs (x, y) such that x, y ∈ ℤ and 

 

 

 
is finite. 
     

Solution. Since f(x) = x5 + 3x3 – 3x2 + 6 is irreducible over ℤ (because the only candidate 

integer roots 1, 2, 3, 6 fail to be roots), we can apply the above Theorem 3.5. 
 
3.7. Problem. Find the (integer) solutions of the equation 
 

 

 
Hint. Use Fermat's theorem: 13 | n or 13 | n12 – 1 for all integers n. 
     
3.8. Problem. Find all pairs (x, y) of integers such that 
 

. 

 
Hint. Rewrite the equation as 
 

 

 
and use that 2003 is prime. 
     
3.9. Problem. Find all triples (x, y, z) of integers such that 
 

x + y + z = 3 and x3 + y3 + z3 = 3. 
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Hint. Use that (x + y + z)3 – (x3 + y3 + z3) = 3(x + y)(x + z)(y + z). 
         
3.10. Problem. Let n ≥ 1 be an integer and p ≥ 2 be a prime number. Prove that  
x(x + 1) = p2ny(y + 1) has no integer solution with x ≥ 1 and y ≥ 1. 
     
Hint. Use x + 1 ≥ p2n and p2n – 1 = [pn(2y + 1) + (2x + 1)][pn(2y + 1) – (2x + 1)]. 
     
3.11. Problem. Let D = m2 + 1 for some integer m ≥ 1. Prove that x2 – Dy2 = 1 has 
infinitely many integer solution. 
     
Hint.  Note that x = 2m2 + 1 and y = 2m is a solution. Now find recursively further 
solutions using the following argument: By the binomial theorem we have that, for each n 

 ,   

 and  

for some pair (xn, yn) of integers. Also 
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TRANSFORMATION   METHODS 
 

Svetoslav Bilchev, Emiliya Velikova 
UNION OF BULGARIAN MATHEMATICIANS 

 
 

Section 1. INTRODUCTION  

The world famous mathematician COURANT has defined the mathematician as "a man 
who works very hard at being lazy". As we think he had wanted to illustrate one of the 
most important qualities of every serious mathematician, that was called "work-laziness 
duality", which is the base of the transform theory. 

Although the transform theory is usually though like some certain complicated definite 
integrals, we prefer to take a broader view, which will give to us the possibility to see just 
what it is that goes "on behind the scenes". 

But actually which is this simultaneously laziness and very hard - working 
mathematician? 

Here it is the base problem from the view of our laziness-serious worker. Really, very 
often the mathematician is faced with a difficult problem which he certainly must solve. 
But, like a "lazy", he wishes the problem to be an easy problem or at least an easier 
problem. And being a good and very hard worker, he endeavors to find the way for 
reducing it to the same. 

The action in which the hard problem reduces itself to an easy (or an easier) problem 
names a transformation and the corresponding method names the transform method. 

Hence, the mathematician who wants to go from the box on the left to the box on the 
right in Fig. 1 and finding himself unable (or "too lazy") to do it so directly, he prefers to 
take the circuitous and may be longest, at the first view, path in Fig. 2. 
 
 
       
 
 

Figure 1 

 

 

 

 

 

 

 

 

 

Figure 2 

It turned out that this circuitous path is exceptionally intellectually concentrated and 
astonishingly effective not only in the high mathematics but also in the classic 
(elementary) mathematics. 
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Section 2. SOME TRANSFORMATIONS 

2.1. Transformation for numbers 

 

In ancient times, the multiplication of two numbers was something practiced only by the 
geniuses of the day. No wonder either, the multiplication being carried out in Roman 
numerals. Today a grade - school boy can easily knock off  

                                            (LXVII)   times   (XXXIV) . 

Problem 2.1.1.  Calculate the product  (LXVII) . (XXXIV)  
 
Solution.  The main idea is to transform the Roman numbers into the ordinary digital 
system.  
First step:  (LXVII) . (XXXIV) = 67.34  

 
 
 
 
 
 

Third step: 2278 = MMCCLXXVIII . 

Thus  (LXVII) . (XXXIV) = MMCCLXXVIII . 
This school boy (who obviously multiplies better then we do) has already grasped the 
whole philosophy of transform theory. He took the three steps:  

1. First step: Transform    
2. Second step: Solve 
3. Third step: Invert 

in a very clearly delineated way.  

Even this simply little example brings out one of the basic properties of a transform. A 
transform corresponds to a representation.  

 

2.2. Transformations for sums 

Problem 2.2.1.  Calculate the sum: 

(1)  
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k
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24 1

.  

Solution.  The main idea is to “zoom” the sum. Let  
1
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the sum (1) can be presented as follows  
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(2)                   nFnFFFFF 12110
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Then we get from (2) the answer of (1):   
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Problem 2.2.2.  Calculate the sum  

(3)  
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Solution. It is obvious that  

(4)                121121
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Let we put  
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1

  in (4). Then the sum (3) is equal to 
  

 14

21





nn

nn
. 

 

2.3. Transformations with applying of the basic triangle inequality 

Below we will use so named “basic triangle inequality” for the triangle ABC , i.e. 

  ACBCAB   . 

Problem 2.3.1.  Find the best low bound of the function: 

    2 21 3 1f x x x x x      ,  where x  is real variable. 

Solution. The main idea is to present the expressions  xx 12  and 

132  xx  as sides of a triangle and to apply the basic triangle inequality.   

Case 1. Let  x > 0. For ABC  with 
090ACB  , 1 BCAC  we construct a line 

through the point C which divide ACB  into two angles, respectively, equal to 
030   and 

060  (Fig.3). On this line we take a point М such that 0CM x  . Then 

211 22 AB . 
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Figure 3 
 

By the Cosine theorem we calculate 

 13
2

3012
22

1  xxcos.x.xAM ,       AMC   

and 

 1
2

6012
2

1
2

 xxcos.x.xBM ,            BMC . 

Thus BMAM)x(f   and the problem can be transformed to find the best low 

value of the broken line AMB . Thus ABMBAM)x(f  , i.e. 

(5)            2113 22 xxxx 2)x(f      .            

The equality occurs in (5) when  'M M   or  'x CM . In this case we calculate 

that: . It follows that 3 1x     (Fig. 4). 

 

Figure 4 

Hence   213 f , i.e. the best low bound of ( )f x  is equal to 2 . 

Case 2.  If x = 0, it is obvious that 2110 )(f . 

Case 3.  Let  x < 0. Analogically, we construct the point M '  on the line CM '  (on the 

other site of the point С), such that 0CM' x    (Fig. 5). Then ' ' 2AM BM  , 

i.e. (5). 

A

C

B

M

1 1

M'

060

x

1

sin 45 sin 75o o

x


A

C

B

1 1

M = M'

060

x

0
75
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Figure 5    

Problem 2.3.2.  Solve the inequality  

(6) 
5

7
3683526635 22  xxxx .               

Solution. We apply the same idea for transforming the expressions 

26635 2  xx , 36835 2  xx , 
5

7
 into sides of a triangle. So we 

construct the quadrangles ACBM   

(case 0x ) or 'ACBM  (case 0x  ) and we apply АМ BM AB   or 

' 'АМ BM AB  .  

Case 1.  Let x > 0  and 
35

24
cos  ,cos  

35

33
  (Fig. 6). Then 

(7) 
2 2 7

35 6 6 2 35 8 6 3
5

AM BM x x x x AB         .     

 

Figure 6 

 

Case 2.  Let x < 0. We transform    35 , , 35 , ,x x         , i.e. 

M M'  (Fig. 7). Analogically, (7) is true for the point  'M , i.e. (6) is true when  x < 0. 

A

C

B

M

1 1

M'

060

x

x-

A

C B

A M

B




35x

3

2
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                                                               Figure 7 

Case 3.  Let x = 0 . The inequality (6) is true because  
5

7
32  . 

Hence, the inequality (6) is true for every real x . 

 

Problem 2.3.3.  If  x,y,z   are arbitrary positive numbers, prove the inequality 

(8) 
222222 zxzxzyzyyxyx   .  

 
Solution. We apply the same idea as before but the construction of the triangle is new 
one.  

Let we construct the quadrangle ABCD  (Fig. 8), where ,xDA 0  ,yDB 0  

,zDC 0 o60ADB BDC  . 

 

 x xz z 2 2   

x xy y 2 2   y yz z 2 2   B 

D 

A C 

x z 
y 

60 
o 

60 o 

 

Figure 8 

By applying the Cosine theorem for the triangles ∆ADB, ∆BDC, ∆ADC respectively we 
find that  

(9)  
222222 zxzxAC  ,zyzyBC  ,yxyxAB   . 

The equality (8) immediately follows from the existence of ABC , i.e. from (9) and 

ACBCAB  .  

The equality in (8) occurs only when the point АСВ .  Then 

M'

35x-

A

C B

A M

B




35x

3

2
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 ADB BDC ADCF F F    ,   i.e. 

 

0 0 01 1 1 1 1 1
sin60 sin60 sin120   

2 2 2
xy yz zx xy yz xz

x z y
       

. 

 
 

2.4. Transforming of algebraic inequalities into geometric inequalities  

Problem 2.4.1.  For 0z,y,x  prove the inequality 

(10)  xyzxyzyxyxxzxzzyzy  3222222
 . 

 
Solution. It is obvious from the given construction (Fig. 9) that the inequality (10) is 

equivalent to the following well-known geometric inequality 2 3 3a b c F   , i.e. 

36rcba  .  

   

x xy y 2 2   

y yz z 2 2   

B 

. 

A 
T 

x 

z 

y 
120 o 120 o 

C 

z zx x 2 2   

 

Figure 9 

Problem 2.4.2. For 0z,y,х  prove the inequality 

(11) 
22222233 xzxzzyzyyxyx

xyzxyzzyx







.  

 
Solution. We use the same construction (Fig. 9) for proving that (11) is equivalent to the 

inequality 2 3x y z AT BT CT F      . The inequality is true because it is a 

special case of the well-know inequality 1 2 3 2 3R R R F    (Fig. 10) which is done 

for every internal point P. 
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Figure 10 

Problem 2.4.3.  For 0z,y,х  prove the inequality 

(12)         2222
3 zyzyyzx  .  

 
Solution. We find that (12) is equivalent to the inequality 

(13)  RCTBTAT 3  

by applying the same transformation (Fig. 9).  
It is well-known that the Torichelly’s point T has the following property (Fig 10) 

(14) PCPBPATCTBTAzyx  . 

Then it is necessary to choose OP   , where O is the circum centre of ABC , and 

(14) become (13), i.e. (12). 
 
 

2.5. Transformations for algebraic problems  

Problem 2.5.1. Find the best low bound of the function    

  

  

2 2

2 2 2 2

3
( , )

7 3 12

x y
f x y

x y x y




 

,  where    00,y,x   . 

 
Solution.   At first, we have to make a very important observation that  

                  222222 3712239 yxyxyx  . 

Hence, if apply the algebraic transformation  

     
2

120122 2222 u
yx.e.i,uyx     and    

037 22  vyx , then    

1R

C

3R

2R
P

BA
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9

3 22 vu
yx


   and     

uv

vu.
u.v

vu

v,ugy,xf







9

2

2

9  .  

But from well - know inequality: uvvu 2 , i.e. 2


uv

vu
 when 0v,u , it follows 

that      
9

22
2

9

2

9

2



 .

uv

vu.v,ugy,xf   or  
9

22
y,xf . 

The equality occurs if  u v , i.е.  

    52137122 2222 :y:xandyxyx   . 

 
Problem 2.5.2.  Let z,y,x  are real numbers, such that 

(15)  
2222

5

2
2 azyx  ,  0a .  

Find the best low and upper bounds of the expression zyx  . 

 
Solution.  Let zyxu  . Then zyux   and (15) transforms itself into:  

       0
5

2
2 2222  azyzyu    , i.e. 

(16)   0
5

2
2223 2222  auuzzyzuy .   

The equality (16) has to have only real roots with respect to y , i.e.  

  0
5

2
223 2222

1 







 auuzzzuD  or 0

5

6
245 222  auuzz .   

If we suppose that    

(17)            066
5

6
252 22222

2 







 uaauuD , 

then the inequality (16) has not any real solution for z. Hence 

066 22
2  uaD , then  

22 au    or  aua  , i.e: azyxa  . 

 

2.6. Transformations for algebraic systems 

  
The main idea in this section is to transform the given algebraic problems into geometric 
ones.   

Problem 2.6.1.  Let , , 0a b c   for which 
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1. (18)  
2

3
 cba .   

2. Prove that the system  

(19)  

1

1

1







cycx

bxbz

azay

 has exactly one solution. 

 

Solution. We construct an equilateral triangle АВС with unit sides. Then the altitude of 

this triangle is equal to 
2

3 . There exists just one point М, inside of the triangle, which 

distances to BC and CA are equal to a  and b  respectively. This point M is the only 

one intersection point of the lines 11   , ba  which are parallel to ВС and СА and have the 

distances a  and b  to them respectively (Fig. 11).  

  
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 11 
 

Let the last one distance from M to AB is equal to u.  Then 

 BMC CMA AMB ABCF F F F          

and   

 1
2

3

2

1
1

2

1
1

2

1
1

2

1 ...u..b.a   ,  i.e. 

(20)  
2

3
 uba . 

From (18) and (20) it follows that cu  . Therefore, the distances AM, BM, CM are 

determined in only one way by the uniqueness of the constructed point M when а, b, c > 

0 are given, satisfying (18). They are exactly equal to x , y , z  respectively as it 

follows from (19) and the Fig. 11. 
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Really, the system (19) is equivalent to the system   

 

1

1

1







QBAQ

PACP

NCBN

 

and then it has exactly one solution 

 
2AMx  ,  

2BMy  ,  
2CMz  .      

                                                        

Problem 2.6.2.  Solve the system  

(21)   

2222

2222

2222

cycxz

bxbzy

azayx







 ,   where  0c,b,a . 

 
Solution. We construct a triangle with sides x, y, z and altitudes a, b, c respectively (Fig. 
12). 
 

 

Figure 12 

Then it is absolutely evident how to obtain the system (21). 
Now we have to find the sides of so constructed triangle. From  

    csbsassFczbyax  22   

it follows that then the solution of the system (21) is 

 
c

F
z,

b

F
y,

a

F
x

222
  ,   where 

 
2

1

111111111111















































cbacbacbacba
F . 

 
 
 
 

C

BA

c
b

z

y x
a
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2.7. Transformations for algebraic and trigonometric problems  
 

Here we will use so named “cyclic sums or cyclic products”, i.e. for example: 

                
xyzxyzyz

1111
  or    tg.tg.tgtg  . 

Problem 2.7.1.  If the angles , , ,
2

o


  
 

 
 

 are such that  

(22)  atgtgtg   222
,  2,0а ,                            

prove the inequality  

(23)  
 
 









 sin

 cos
tg . 

 
Solution.  The main idea is to transform the trigonometric problem (22) and (23) into an 
algebraic inequality 

(24) 
yx

xy
z






1
 , 

where ,  ,  х y z  are positive real numbers, such that   ax2
,  2,0а .  

From the obvious inequality   02  zyx  consequently follows that  

  2 2 2 2 0  x y z xy xz yz         

 

2 2 2

1    ( ) 1  
2 2

x y z a
yz zx xy z x y xy

 
             

(24). 

At the end we substitute  tgz,tgy,tgx    in (24) and then we get  

  
 
 



























sin

cos

sin.coscos.sin

sin.sincos.cos

tgtg

tg.tg
tg

1
. 

 

Problem 2.7.2. Let 0z,y,х  are such that  

1. xyzzyx  . 

Prove the equation 

(26)  01111
1 2222 






  zyzy
yz

. 

 

Solution. We will use the following transformation:  

 0 tgx , 0 tgy , 0 tgz     with   









2
,0,,


 . 
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The equality 

   0 tg , i. е.    

follows from the identity  

  













tgtg

tgtg
tg

 1

 
  

and from (25) .  

Then it follows that  

 
2222


   and 0

22

22
1

222
















 








tgtg

tgtg

gcot . 

Hence,  

1.  1
22



tgtg .  

But      
x

x
tg

11

2

2 



 , etc., and from (27) we obtain consequently: 

2.  1
1111 22




 z

z
.

y

y
 , 

3.  111111
1 2222 






  zyzy
yz

 , 

4.   1
1

1111
1 2222 






   yz
zyzy

yz
. 

 

We obtain (26) from (30) and (25), because (25) is equivalent to  1
1

yz
 . 

 
2.8. Transformations with vectors 
  

Problem 2.8.1 .  If  a, b, c, x, y, z  are arbitrary real numbers prove the inequality:  

(31)  2 2 2
.   .

3
ax a x a x

 
  
       . 

 
Solution.  It is possible to transform (31) consequently to the following inequalities: 

 2 2. .3 3    2  ax a x a x             

  2 2.3    2 2 3a x ax a y z ax              
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(32)  . 

By applying the well-known Cauchy–Bunyakowsky–Schwartz’s inequality for the vectors 

  ,  ,  m a b c    and    2 2 ,  2 2 ,  2 2n y z x z x y x y z        

we obtain the following inequality  

 (33)    
22.2 2   2 2a y z x a y z x       .  

The inequality (33) is equivalent to (32) because 

(34)  
22 922   xxzy .  

Really   

  

    2 2 3 2 2 3y z x x y z x x               

  . 

Then (32), i.e. (31), follows from (33) and (34).  
 
Problem 2.8.2. Find all real solutions of the equation 

(35)         xxyzzxyyzx 4252625 222
. 

 
Solution.  We transform the equation (35) by vectors   

  






  xyz,zxy,yzxb 222 222


 and    565 ,,а


 

into the vector equation: bab.a


 , which is true only when 1












 

b,acos


. Then the 

vectors b,a


 have to be collinear, i.e.  

(36) 
5

2

6

2

5

2 222 xyzzxyyzx 






   or 

(37)  az,ay,ax  2   and   az,ay,ax 525  , 

where  a  is an arbitrary nonnegative number. 
 
 

2.9. Transformations for sequences  

Problem 2.9.1.  The sequence  is given by the conditions 

(38) , 132 2
1  nnn aaa , . 

Find all elements of (38) which are natural numbers. 

 2 2.3   2 2a x a y z x    

 
2 2 2 22 2 9 (2 2 ) (3 )y z x x y z x x        

   

   2 2 2 4( ) ( 2 ) 0x y z y z x x y z y z x           

 na

11 a ,,,n 321
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Solution. By the help of (38) we get 
 
and  for every natural number . 

From 
  

we obtain  

(39) . 

If  we  have  the  sign  „+“  in  (39)  then  .  But  from  (38)  it  follows 

 , i.e. . Thus which is in 

contradiction with the proven at the beginning that  is done for every natural 

number . Hence, from (39) we obtain  

(40) , . 

Let we substitute n with  in (40). Then we add the obtained equation 

 to the recurrence condition in (38) and we get the following 

homogeneous  recurrence equation:  

(41) . 

The characteristic equation of (41) is  with roots . Then 

(42)    1 22 3 2 3
n n

na c c    , , 

where the constants 
 

and 
 

is necessary to get from the initial conditions:

, i.e. .  Then (42) becomes  

 

, , 

which shows that  is natural number for every natural n. 

        

 

Section 3.  TRANSFORMATIONS FOR A TRIANGLE  

3.1.  T  transformation 

Problem 3.1.1.  For any triangle   with sides a, b, c  and area F  prove the Finsler-
Hadwiger’s inequality 

(43)    
2234 acbF   . 

 
Solution. We will use the following statement: 

If there exists a triangle   with sides a, b, c  and area F, then there exists a triangle 1  

with sides 

               csc,bsb,asa   

42 a 0na n

  132 22
1  nnn aaa

132 2
11   nnn aaa

02 1  nn aa

021  nn aa nnnn aa.aa 4222 1   0na

0na

n

132 2
11   nnn aaa ,,,n 321

1n

132 2
1  nnn aaa

nnn aaa 411  

0142  qq 32
21


,

q

,,,n 321

1c 2c

41 21  a,a
32

1
21  cc

   





 
nn

na 3232
32

1 ,,,n 321

na
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and area  1F  = .
F

2
 

Really, the triangle 1  exists because 

          02  bsascscbsbasa  , 

            22
cscbsbasabsbasa    , 

      cscbsbasa  . 

The area   1F  of 1  is equal to 
2

F
, because from the Cosine theorem applied for the 

triangle 1  it follows  

 
  

ab

bsas
cos


1 , i.e.  

 
ab

css
sin


1  , or  

    
 

22

1
1

F

ab

css
.bsb.asaF 


  ,  

where 1  is an angle of the triangle 1 . The statement is proved. 

With the help of this statement we will formulate our main conclusion. 
From any known geometric inequality 

(44)   0F,c,b,aI  

it follows the following new (in general case) geometric inequality 

(45)       0
2











F
,csc,bsb,asaIIT

 .  

The new inequality (45) we call the T -image of the initial inequality (44). 

And now is necessary only to find the T -image of the well-known Weitzebőck’s 

inequality 

(46)    342 Fa     , i.e. 

                  32
2

F)as(a      , 32F)as(a   , 

(47)     342 2 Fabc  , 

which is obviously equivalent to the desired inequality (43).  

It is not so difficult to see that the T -image (43), i.e. (47), of the inequality (46) 

is better (sharper) inequality than the initial inequality (46).     
                    

Problem 3.1.2.  If  cbacba r,r,r,h,h,h,r,R,s  are the usual elements of any triangle, 

prove the inequalities 

(48)     345
6

1

2
34

2

1
srRrh.

r

R
srR aa    . 
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Solution.  The double inequalities of Finsler-Hadwiger 

(49)        222 33434 cbFacbF  

are well-known (the left inequality in (49) is the inequality (43)) . 

Now we will find the T -image of the left inequality in (49), i.e. (47):  

  , 

     , 

(50)   , 

where we used  the well-known identity:    . 

But 

(51)    

and from (50) and (51) it follows 

(52)  . 

Further, analogically, we obtain the -image of the right inequality in (49): 

(53)   . 

The inequality (48) follows from (52) and (53). 

 

 

3.2. Combination of transformations for a triangle 

In this section we will give only an idea for using combinations of transformations. 

 

Problem 3.2.1. Prove that the sides  and the area F of any triangle satisfy the 

inequality 

(54)    .       

When does the equality occur? 
 
Solution.  From the generalized inequality  

(55)     

with equality if and only if   

        Fasacsbsbc 322  

 
34164

4
4 2

2

FRrr
ass

F
.

a

Rrs




  Rrs

srR

asa 2

341 




  Rrr)as(a 1642 2

  2

1

F

rh

asa

aa




 
R

r
.srRrh aa

2
34

2

1

T

  
R

r
.srRrh aa

2
345

6

1


c,b,a

Fcba 241283 222 

  Fcbka
k

41
2

1 222 
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it follows the new concrete inequality ( ) 

(56)         

with equality if and only if   

 . 

Now we will apply to the inequality (56) the combination of the Parallelogram 
Transformation - PT(b) with respect to the side b and the Median Dual 
Transformation - MDT. The formulas of the combination of those transformations are 
given below in the Table 1. 

 
           Table 1. Combination of transformations 

Elements of the 
triangle Δ 

PT(b) MDT PT(b)  MDT 

a a   

b    

c c   

 F F   

     
 

The inequality (54) is the final result of the combination of transformations: PT(b)MDT. 
The equality occurs if and only if  

 , 

i.e.    .  

 

222 2  kk::kc:b:a
4k

Fcba 82103 222 

13122 ::c:b:a 

am 222 623
2

1
cba 

bm2 bm b
2

1

cm 222 326
2

1
cba 

F
4

3
F

4

3

13122326
2

1

2

1
623

2

1 222222 ::cba:b:cba 

5352 ::c:b:a 
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COMPLEX NUMBERS IN GEOMETRY 

Mircea Becheanu 
ROMANIAN MATHEMATICAL SOCIETY 

 

 It is well known that there exists a bijective correspondence between the set of the 
points of a plane and the set C of complex numbers. This correspondence provides us 
with the advantage of using complex numbers in order to describe geometric situations. 
This description is possible not only because the set C is endowed with algebraic 
operations but also because it enjoys polar representation of complex numbers and 
fruitful functions like module and conjugation. We will see that using these elementary 
notions many geometric problems can have straightforward and nice solutions. So, 
complex numbers come out to be a wonderful world, rich in properties and easy to be 
handled. Our excursion in their land will be accomplished by a collection of problems 
which can be solved in a rather elegant way by using this tool. 

  In the forthcoming, if it is not stated otherwise, we will denote by capital letters A, B, C, 
... , Z the points of the plane and by small letters a, b, c, ... , z their corresponding 
complex affixes. The complex affix a of a point A is also called the complex coordinate of 
that point. We start with some elementary but elegant examples and after that we will 
present some basic geometric configurations which can be successfully studied by using 
complex numbers. 

 

  1. Examples 

  1.1 Triangle inequality. Given complex numbers z1, z2 the following inequality is true 

                                                             | z1 + z2 | ≤ | z1| + |z2|.                                        (1) 

  Proof. Since |z| is a nonnegative real number, one may square the required inequality 
to obtain equivalent forms:  

| z1 + z2 |
2 ≤ | z1|

2 + 2|z1||z2| + |z2|
2  

(z1 + z2)( ) ≤ z1  + z2  + 2   

z1  + z2  ≤ 2 . 

Let us denote z1  = w; then  =  z2. The last inequality becomes w +  ≤ 2|w|. 

Set w = x + iy and obtain that it is equivalent to 2x ≤ 2 . But this is obvious. 

  When does the inequality (1) becomes an equality? It happens if and only if x ≥ 0 and y 

= 0, which gives that w = z1  = λ is a nonnegative real number. After multiplying the 

above equality by z2, one obtains λz2 = |z2|
2z1. Since λ ≥ 0, it follows that the vectors 

,  which represent the numbers z1, z2 are collinear and similarly oriented. 

  

The triangle inequality for complex numbers has a geometric interpretation: in a given 
triangle the sum of two sides is longer then the third side. Indeed, given the points A, B, 

21 zz  1z 2z 2211 zzzz

2z 1z 2211 zzzz

2z w 1z w
22 yx 

2z

OA

OB
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C such that  +  =  one obtains the parallelogram OACB in which OA = |a|, 

AC = OB = |b|, OC = |a + b|. Since OC ≤ OA + AC, one has precisely |a + b|  ≤ |a| + |b|. 

 

 

  1.2 Pompeiu's theorem.3 Let A, B, C be an equilateral triangle and Z be a point on its 
plane, but not on its circumcircle. Then the line segments ZA, ZB, ZC are the sides of a 
triangle. 

  First solution. We start with a beautiful geometric solution. Assume that Z is an interior 
point of ΔABC (see  Fig. 1). Draw through Z lines parallel to the sides AB, BC, CA which 
intersect these sides at the points P, M and N, respectively. The quadrilaterals APZN, 
PZMB and MZNC are isosceles trapeziums. Therefore one has ZA = PN, ZB = PM, ZC = 
MN and ΔMNP is the required triangle. A similar argument works when Z lies on a side 
of the triangle. 

  The second case is when Z is an exterior point. Consider the rotation about A by an 
angle of 600 which maps B onto the point C and let W be the image of Z under this 
rotation. Since rotations preserve distances we have ZC = WB and it is obvious that ZA 
= WA (Fig. 2). Therefore ΔZWC is the required triangle. 

  

 

 

 

                                 Figure 1                  Figure 2 

 

                                                 
3 Dimitrie Pompeiu (1873-1954) was a famous Romanian mathematician who was also 

interested in elementary mathematics. 
 

OA OB OC

A

B C

Z

W
A

B C

Z

N

M

P

O

C

B

A
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 We remark that the last argument works independently of the position of the point W, 
externally of ΔABC, or even inside it.  

  Second solution. When the solver has no intuition to draw parallel lines or to use 
rotations, he can refer to complex numbers. As usually suppose that the points A, B, C, 
Z have complex coordinates a, b, c, z. It is easy to see that the following identity holds:  

(z - a)(b - c) + (z - b)(c - a) + (z - c)(a - b) = 0. 

We may write it in the form  

-(z - a)(b - c) = (z - b)(c - a) + (z - c)(a - b). 

Then take modulus in the equality and apply the triangle inequality to obtain  

|z - a||b  -c| ≤ |z - b||c - a| + |z - c||a - b|. 

Taking into account that |a - b| = |b - c| = |c - a| one obtains 

|z - a| ≤ |z - b| + |z - c|. 

By the comment at the end of 1.1 it is easy to see that the last inequality cannot be an 
equality. This proves that the segments ZA, ZB, ZC are the sides of a triangle. 

  1.3. Ptolemy's theorem. In any convex quadrilateral ABCD the following inequality 
holds: 

ACBD ≤ ABCD + ADBC. 

This result is well known and it is usually proved by geometric arguments. Here we will 
give a short proof inspired by the previous problem. 

  Let a, b, c, d be the complex coordinates of the vertices A, B, C, D, respectively. As 
above, the following identity is true:  

(a - b)(c - d) + (a - c)(d - b) + (a - d)(b - c) = 0. 

After writing it in the form  

(a - c)(b - d) = (a - b)(c - d) + (a - d)(b - c)  

and then by applying the triangle inequality, one obtains 

|a - c||b - d| ≤ |a - b||c - d| + |a - d||b - c|, 

which is exactly the required result. 

 

  2. Lines and collinear points 

  2.1. Equation of a straight line. The points A, B, C are on a straight line if and only if 

the vectors        and  are collinear, i.e. = λ  for some real number λ. In 

terms of complex numbers we have either 

  R, 

or  
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  Therefore, given distinct points A and B, an arbitrary point Z belongs to the line AB if 
and only if  

 

  This is the equation of a line in complex coordinates. It is convenient to write it in the 
form 

                                                                                   (1) 

  Using the algebraic development of a determinant, it is easy to see that the line 
equation is equivalent to 

. 

  The ratio χ =  which appears in formula (1) is called the complex slope of the line 

AB. We remark that it is symmetric in the variables a, b and since |b - a| = | | it 

follows that |χ| = 1. Therefore χ belongs to the unit circle and it can be expressed as χ = 
cosφ + isinφ. It is then convenient to write the equation (1) under the form  

                                                                                (2) 

  The geometric interpretation of the angle φ can be obtained from the definition of the 

slope. From the equality b – a =  and by considering the arguments of the 

numbers that appear in it, one obtains either one of the situations: 

    (i)  = arg (b - a)                    when 0 ≤ arg(b - a) < π, or  

    (ii)   = arg (b - a) - π            when π ≤ arg(b - a) <2π. 

  Let us assume that the point Z divides the segment AB into a given ratio AZ : ZB = λ,  λ 

 R,  λ ≠ -1. Then one obtains from (1) the exact expression for z: 

                                            z = a + b.                                (3) 

We say that the above equation represents the parametric equation of the line through 
the points A, B.  We will understand it in the following way: when λ runs through the set 
R of real numbers, except λ = -1, Z runs through the points of the line AB. In particular, 
when λ = 1, Z is the midpoint of AB and  

z = (a+b). 

Also, when λ takes all real positive values, Z runs over the point segment AB and we say 
that Z is a convex combination of A and B. 
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  2.2 The area of a triangle. Given a triangle ABC one may compute its area in terms of 

complex coordinates of its vertices. It is given by the formula [ABC] =  where 

 

  For the proof, one may use the formula which gives the area in terms of the 
coordinates of the points in a plane: if a = a1 + ia2, b = b1 + ib2, c = c1 + ic2 then [ABC] = 

 where 

 

Hence it is sufficient to show that  

 

This computation is straightforward. 

  As an application of the previous considerations we will present a simple solution of an 
IMO problem. 

 

 

  2.3. Problem.4 The diagonals AC and CE of a regular hexagon ABCDEF are divided by 
the internal points M, N respectively, such that  

. 

Find the values of r if B, M and N are collinear. 

  Solution. Let ε = cos + isin  be the complex cubic root of unity. Since the 

algebra of this number is well known we assume that the affixes of the vertices A, B, ... , 
F are the complex numbers (see Fig.1 )  

a = 1,  b = 1 + ε, c =  ε ,  d = -1,  e = ε2, f = 1 + ε2. 

 

                                                 
4 Problem 5, from IMO 1982 
 

Δ
i4

1

.  

1cc

1bb

 1aa

 Δ 

Δ
2

1

Δ .  

1cc

1bb

 1aa

 

21

21

21

.  

1cc

1bb

 1aa

 
i2

1
  

1cc

1bb

 1aa

 

21

21

21



r  
CE

CN
   

AC

AM


3

π2

3

π2



 153 

                         

Figure 1 

 

The condition of the problem can be translated into a condition about the complex 
coordinates of the points M, N (see (2.1)) as follows: 

,  r  R,  0 < r <1. 

From the above, one obtains the expressions  

m =1 + r(ε - 1) = (1 - r) + rε 

and  

n = εm = (1 - r)ε + rε2 = -r + (1 - 2r)ε. 

 The condition of collinearity gives 

 

Looking at the expression of m we obtain an equation in r and the problem reduces to 
solving this equation. It is important to handle the algebraic computations in such a way 
that one obtains a convenient final form: 

 

This equation is successively equivalent to 

  (m – 1)(  - 1) = 1      3r2 = 1. 
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Given the restrictions on r, the required solution is r = . 

  3. Angles 

  3.1. The angle between two lines. Similar triangles. Given complex numbers a, b 

and A, B their corresponding points, the angle AOB is given by the formula  

AOB = arg = arg b - arg a. 

 

 

 

 

 

Figure 1  Figure 2 

 

Given three points A, B, C one has  

ABC = arg . 

These considerations can be applied in various situations. For example, given four 
distinct points A, B, C, D, the lines AB and CD are perpendicular if and only if the vectors 

 and  are perpendicular. This is equivalent to 

 = λi      where  λ  R, λ ≠ 0. 

The condition is equivalent to the following equality:  

 = -  

  Another example is the characterisation of similar triangles. Let A1A2A3 and B1B2B3 be 
two triangles and let assume that they have the same orientation. The triangles are 
similar if and only if  

and A2A1A3 =  B2B1B3. Using complex numbers, these conditions are 

equivalent to the following:  
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Using the expanding formula of a determinant, the above condition can be written in the 
form 

 

                              

   

Figure 6 

 

In the case when the triangles A1A2A3 and B1B2B3 have different orientations then one 

may take the triangle whose vertices are the reflexions of B1, B2, B3 along the 

axis Ox. It has the same orientation as ΔA1A2A3. The complex coordinates of its vertices 

are the conjugate numbers    , , . Then the condition of similarity is 

 

 

  3.2. Rotations. The equilateral triangle.  Given a point Z0 and an angle φ, where 0 ≤ 
φ < 2π, we define the rotation about Z0 by angle φ to be the function defined on the 
complex plane which maps an arbitrary point Z to the point Z' such that Z Z0 = Z'Z0 and  

ZZ0Z' = φ. Therefore, by the above considerations we have  = cosφ + isinφ. Set 

ω = cosφ  + isinφ. Then z'  is given by the formula  

z' = ωz + (1 - ω)z0. 

It is called the analytic formula of a rotation. Using it, one can easily prove many 
properties of rotations. For example, we will show that any rotation preserves distances. 
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Let w be the complex coordinate of a second point and let w' be its image by the same 
rotation of angle φ about z0. Then w' = ωw + (1 - ω)z0. A standard computation shows 
that 

|z' - w'| = |ωz + (1 - ω)z0 - ωw - (1 - ω) z0| = |ω||z - w| = |z - w|. 

  As an application of the rotation formula we will give the condition for the vertices of an 
equilateral triangle: three distinct points A, B, C are the vertices of an equilateral triangle 
if and only if their affixes a, b, c satisfy the equality  

(a - b)2 + (b - c)2 + (c - a)2 = 0. 

  Proof. The triangle ABC has in the plane either a counter-clockwise (see Fig.1) or a 
clockwise (see Fig. 2) orientation. 

 

 

 

 

Fig.1  Fig.2 

 

 

In the first case, C is obtained from B by a rotation of 600 about A. Hence the rotation is 

given by multiplication by ω = cos  + isin  = 1+ ε. After applying the rotation formula 

for this case one obtains c = b(1+ ε) + [1 - (1 - ε)]a= - bε2 -aε. It is convenient to express 
this condition in the form 

a + bε + cε2 = 0. 

   In the second case, the triangle ACB has a counter-clockwise orientation and we have  

a + cε + bε2 = 0. 

Therefore, the triangle is equilateral if and only if one of the above equalities is verified. 
This is equivalent to  

(a + bε + c ε2)( a + cε + bε2) = 0. 

After multiplication and using the algebra of cube roots of unity, one obtains the required 
result. 
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  3.3. An IMO problem with equilateral triangles.5  We are given a triangle A1A2A3 and 
a point P0 in its plane. We define Am = Am-3 for all m ≥ 4. One constructs a sequence of 
points P0, P1, P2, ... such that Pκ+1 is obtained from Pκ by a clockwise rotation about Α κ+1 
by an angle of 1200, for all k = 0, 1, 2, ... . Prove that if P1986 = P0 then the triangle A1A2A3 
is equilateral. 

  Solution. Let us assume that ΔA1A2A3 has a counter-clockwise orientation and let us 
denote by z0, z1, z2, ...  the affixes of the points P0, P1, P2, ... respectively. Then, a 

clockwise rotation of 1200 requires to use the complex number ω = cos + isin = ε2. 

By the above considerations we have: 

z1 = z0 ε
2 + (1 -  ε2)a1 

z2 = z1ε
2 + (1 - ε2)a2  =  z0ε + ( ε2 - ε)a1 +(1 - ε2) a2 

z3 = z2ε
2 + (1 - ε2)a3 = z0 + (ε -1)a1 + ( ε2 - ε)a2 + (1 - ε2) a3 

    = z0 + (ε - 1)(a1 + εa2 + ε2a3). 

 

  An easy induction upon n shows that after n cycles of three rotations one obtains that 
P3n is represented by  

z3n = z0 + n(1 - ε)(a1 + εa2 + ε2a3). 

Thus, z1986 = z662.3 = z0 + 662(1 - ε)(a1 + εa2 + ε2a3).  

Therefore, if z1986 = z0, one has a1 + a2ε +a_3ε2 =0.  The required result follows. 

  3.4. An IMO problem which involves rotations. 6  Let ABC be a triangle. The 
triangles ABR, BCP and CAQ are drawn externally on the sides AB, BC, CA 

respectively, such that PBC = CAQ = 450,  BCP} = QCA = 300 and  RBA = 

RAB =150. Show that QR = RP and  QRP = 900. 

This problem is more difficult and the students did not attempt at the time a solution 
using complex numbers. Nevertheless, this method makes it more accessible. 

  Solution. Too many angles in this problem! The advantage is that all are a multiple of 
150. We shall use complex numbers in a very special way. Take the origin O of the 

complex plane as the point R, so R  O, and the real axis to be parallel to the side BA. 
Also, we may assume that OA = OB = 1. (See Fig 1) 

                                                 
5This was Problem 2 in the 27th IMO, 1986. 
 
6 Problem 3 in the 17th IMO, 1975. 
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                                                              Figure 1 

 

  Since all angles considered are multiples of 150, let denote ω = cos150 + isin150 = cos

 + isin . In this way, a = ω and b = ω11. Choosing the orientation of ΔABC as in 

(Fig 1) it is easy to see that the point C is obtained from Q by some rotation about A. So 
the complex number q is uniquely determined by the conditions:   

 

    (1)                                                    c - a =  ω3(q - a), 

    (2)                                                    q - c = ω2(a - c). 

In the same way, the number p is completely determined by the conditions: 

 

 

   (3)                                                     b - c = ω2(p - c), 

 

 

  (4)                                                   p - b =  ω3(c - b), 

By the similarity of the triangles ΔAQC  ΔBPC and then using the law of sines one 
obtains the proportionalities 
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 After multiplication of equalities (1) and (2) one has  

q - c= ω5(a - q)   q(1 + ω5) = c + ω5a. 

Taking into account that a = ω, finally we have 

q =  

Similar computations with (3), (4) and using b = ω11, give the equality 

p =  

It is obvious that  and  

  Now we have to prove that p = iq. Since i = ω6, this is successively equivalent to 

  ω( )  1 – ω6 = (1 – ω4) 

Again, since ω6 = i, we have 1- ω6 = 1 - i = ω21. Hence, the required equality is 

equivalent to 

   (5)                                                         ω20 + ω4 = 1.  

We can prove this in two ways. An easy computation shows that ω20 = cos + isin

= - i  and ω4 = cos + isin = + i . The conclusion follows. 

The equality (5) can also be deduced from the picture bellow: 

                                               

                                                                  Figure 2 
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  3.5 Cyclic points.  It is known that any three points that are not collinear, lie on a 
circle.  We say that the points A, B, C, D are cyclic if they lie on a circle. This condition 
can be expressed in terms of complex coordinates a, b, c, d of the points.  The points A, 
B, C, D, which are not collinear, are cyclic if and only if their complex coordinates satisfy 
the condition  

:  R. 

This follows immediately from the considerations of 3.1. Given the points A, B, C, D, The 

point D lies on the circumcircle of the triangle ABC if and only if ACB = ADB. This 

means that the complex numbers  and  either have the same arguments or 

their arguments differ by π. Since they can have different moduli it follows that  

= λ , 

where λ is a real number, positive or negative. So, the stated result follows. 

  3.6 A problem with cyclic points. Let ABC be a triangle, D be the foot of the altitude 
from A and K an arbitrary point on the segment AD. The perpendicular projections of the 
point D on the lines BA, BK, CA, CK are the points M, N, P, Q respectively. Show that 
the quadrilateral MNPQ is cyclic. 

  Solution. In this problem we have four perpendiculars from D. Hence it is convenient to 
choose coordinates such that D is the origin, the line BC the OX axis and DA the OY 
axis (See Figure 1) Therefore, the given points A, B, C, K have complex coordinates ai, 

b, c, k, respectively, where a, b, c  R. 

 

                                  Figure 1 

 

  To obtain the coordinate m of the point M we will use the considerations from 2.1. and 
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m(a + bi) - (b - ai) = 2abi. 

The condition of orthogonality between AB and DM is  

m(a + bi) - (b - ai) = 0. 

Solving the system given by these equations one obtains  

m =  

By changing in the above considerations the point A by k one obtains  

n =  

 In the same way one obtains the coordinates p and q: 

p = and q = . 

The condition of cyclic points as given in 3.5 is 

:  R. 

We replace m, n, p, q in the above and one has 

                                        :  =  

                            =  

                                                         = R 

This proves the required result. 

 

  4. The geometry of a triangle 

  4.1. Remarkable points in a triangle. Let ABC be a triangle and a, b, c be the affixes 
of its vertices, respectively. Let G, H, O, I be its centroid, orthocentre, circumcentre and 
the incentre, respectively. Our first aim is to find the complex coordinates of these points. 
Then we will proceed  using them in problem solving. 

  The centroid G has the complex coordinate  

g = (a + b + c). 

Indeed, this result has a vectorial character. It is known that G lies on the median AA' 

such that = 2 . Since a' = (b + c) it follows by the formula (3) that  
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g = a + a' = a +  = (a + b + c). 

 

If the circumcentre O is precisely the origin of the complex plane, then the orthocentre 
H has complex coordinate h = a + b + c. To prove this formula, it is enough to prove the 
following equality of vectors, 

= +  + , 

which is known as Sylvester’s equality. We give a nice proof for it. The idea is to 

compute the sum of vectors +  +  and then to see where is its end point H. 

The sum can be computed in the form + (  + ) and we denote this sum by 

, without stating yet where the point X is. The vector  =  +  is such that 

OD  BC because OBCD is a rhombus (see Figure 1).  

 

 

 

 

 

Figure 1  Figure 2 

Then, the sum  =  +  is such that OAXD is a parallelogram and we obtain 

that OD  AX. It follows that AX  BC and so X lies on the altitude from vertex A in the 
triangle ABC. This procedure can be repeated by grouping the sum of vectors in other 

two different ways and we finally obtain that X lies on all three altitudes, so X  H. Now, 
by using complex numbers instead of vectors, the required equality h = a + b + c follows. 

  If the circumcentre O of ΔABC is not at the origin and if it has complex coordinate w 
then the orthocentre H has complex coordinate h = a + b + c - 2w. To prove this, one 
may use a translation of vector -w to obtain a triangle with vertices a - w, b - w, c - w and 
the circumcentre at the origin of the coordinate axes. This triangle has its orthocentre in 
a point H' such that h' = (a - w) + (b - w) + (c - w) = a + b + c - 3w (See Fig. 2) By a new 
translation of vector w,  which moves back to the original triangle, its orthocentre will be 
in H and h = h' + w = a + b + c - 2w.   

  The incentre I of a triangle can also be computed in complex coordinates by using the 
complex coordinates of the vertices and the lengths of the sides. Then the complex 
coordinate κ of the incentre I is given by the formula  

3

1

3

2

3

1

3

2

2

cb 

3

1

OH OA OB OC

OA OB OC

OA OB OC

OX OD OB OC

OX OA OD

C 

Β1 

Α 

Β 

Α1 

O 

O1 

C1 

-w 

-w 

-w -w 

O

A

C

B

D


G



 163 

κ =    

  Proof. Let AD be the angle bisector of the BAC, where the point D lies on the side 
BC. Then, by the bisector theorem the following equality BD : CD = AB : AC holds. Using  
formula (3) from Section 2.1. it follows that  

d =  

The length of the segment BD is BD = . We apply again the bisector theorem 

for the bisector AI in triangle ABD and using the same formula (3) obtain 

 

  4.2. The nine points circle. In a given triangle ABC we denote by A', B', C' the 
midpoints of the sides BC, CA AB, by A'', B'', C'' the feet of the altitudes from A, B, C and 
by HA, HB, HC the midpoints of the segments AH, BH and CH respectively. The nine 
points 

A', B', C', A'', B'', C'', HA, HB, HC 

are on a circle (the nine point circle or Euler circle of the triangle ABC) and the centre of 
this circle is the midpoint of the segment OH. 

  Proof. We may assume that the circumcentre of ΔABC is the origin O of the complex 
plane and its circumradius is R, so that |a| = |b| = |c| = R. The complex coordinate of H is 
h = a + b + c and the coordinates of the points A', B', C', A'', B'', C'', HA, HB, HC are a' = (b 
+ c)/2, b' = (c + a)/2, c' = (a + b)/2, hA = a + (b + c)/2, hB = b + (c + a)/2 and hC = c + (a + 
b)/2. Let Ω denote the midpoint of the segment OH. Its coordinate is ω = (a + b + c)/2. 
By computing distances we obtain 

|a' - ω| = |  - | =  =  , 

|hA - ω| = |a +  - | = =  , 

and the analogous for the vertices B and C. These prove that the six points A', B', C', A'', 

B'', C'', HA, HB, HC are on the circle with centre Ω and of radius .  
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Figure 1 

 

  As for the remaining three points, we will use a geometric arguments coming from 
(Figure 1). Since Ω is the midpoint of OH it is at equal distance from A' and A''. So ΩA'' = 
1/2. A similar argument is works for the points B'' and C''. 

   

 

4.3. Two problems about triangles. 

  Problem 1. We are given an acute angled triangle ABC and let HA, HB, HC be the feet 

of the altitudes from A, B, C respectively. The angle bisectors of BHCC and BHBC 

meet at a point K, the angle bisectors CHCA and AHAC meet at a point L and the 

angle bisectors BHBA, AHAB meet at a point M. Show that if the triangles ΔABC and 
ΔKLM have the same orthocentre then AB = BC = CA. 

  Solution. Let consider the circle with AC as diameter. It passes through the points HA 
and HC. In this circle, the point L is the midpoint of that semicircle which does not contain 

HA, HC. Let B' be the midpoint of AC. Then B'L= AC/2 and B'L  AC. It follows that L is 
the centre of the square constructed externally on the side AC. In the same way K, M 
are the centres of the squares constructed externally on the sides BC, AB respectively 
(See Figure 1) 
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Figure 1 

 

  Now, considering the complex numbers A(a), B(b), C(c) one obtains for the points K, L, 
M the following coordinates: 

k =  + i ,  

l = + i ,  

 m =  i . 

From these equalities it follows that k + l + m = a + b + c. 

The orthocentre H of ABC is given by h = a + b + c. Let w be the circumcentre of the 
triangle KLM. Then, its orthocentre is given by k + l + m - 2w = a + b + c - 2w = h - 2w. It 
is given that this point is H. It follows that w = 0. So, the triangles ABC and KLM have the 
same circumcentre. From here one gets OK = OL = OM. Standard trigonometric 
computations give  

OK = Rcos A + a/2; OL =  RcosB + b/2; OM = RcosC + c/2, 

where R is the circumradius of  ΔABC. Using the sine theorem and the above relations 
one obtains  

sinA + cosA = sinB + cosB = sinC + cosC, 

which can be transformed into 

sin(A + ) = sin(B + ) = sin(C + ). 

From the last equalities one has either A + B = C =  or A = B = C. Since the triangle is 

acute, only the second case is possible. 
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  Problem 2. Let ABC be a triangle and H be its orthocentre. On the circumcircles of the 
triangles BCH, CHA, AHB are taken the points A', B', C', respectively such that HA' = 
HB' = HC'. Let K, L, M be the othocentre of the triangle BA'C, CB'A, AC'B, respectively. 
Show that the triangles A'B'C' and KLM have the same orthocentre. 

  Solution. It is known that the reflection of H in a side of the triangle lies on the 
circumcircle. This can be proved as follows: if the altitude AH intersects the side BC in X 
and the circumcircle in Y then the triangles HBX and YBX are equal. It follows that HX = 
YX (See Fig 1.) and this proves the property. Since the circumcircle of ΔABC passes 
through B, C and Y it follows that the circumcircle of ΔBCH is the reflection of the first 

circle in the line BC. The reflection of the circumcentre O is the point W defined by  

=  + . It follows that w = b + c. Moreover, |w - b| = |w - c| = |w - a'| = R, where R 

is the circumradius of ΔABC. 

                                         

 

Figure 1 

 

  By the formula from 4.1 we obtain k = a' + b + c - 2w = a' - (b + c). In the same way, l = 
b' - (c + a) and m = c' - (a + b). Summing up these equalities one obtains  

k + l + m = (a' + b' + c') - 2(a + b + c) = (a' + b' + c') - 2h. 

  The circumcentre of ΔA'B'C' is H. Therefore, again by 4.1, hA'B'C' = (a' + b' + c') - 2h = k 
+ l + m. Since |k| = |a' - w| = R it follows that the circumcentre of ΔKLM is O. Hence, hKLM 
= k + l + m and the required result follows. 

 

  5. Proposed problems 

  Problem 5.1. Show that there does not exist an equilateral triangle whose vertices are 
the corners of squares of an infinite chessboard. 
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  Solution. An infinite chessboard can be regarded as a plane surface endowed with an 
orthogonal system of coordinates. Then, the corners of the squares can be regarded to 
be the points of the plane whose coordinates are integer numbers. Passing to complex 
numbers, they are exactly those numbers which can be written under the form z = a + bi 

where a, b  Z.  

  We mention that the set Z[i] = {a + bi | a, b  Z} is of great importance in Geometry, 
Algebra and Number Theory. It is called the ring of Gauss integers. 

       

     

Figure 1 

 

 

Now, let assume that there exists an equilateral triangle ABC whose vertices are Gauss 

integers. That is, there exist complex numbers a, b, c  Z[i] such that a + bε + cε2 = 0. 
Using the equality ε2 = -(ε + 1) it follows that ε(b - c) = c - a. Hence, one obtains for ε an 
expression of the form  

ε = = α + βi, 

 where α, β are rational numbers. This contradicts the exact formula for ε which says that 

its imaginary part is , an irrational number. 
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  Problem 5.2. Assume that the plane is the disjoint union of a family of equilateral 
triangles. Show that there does not exist a square whose vertices are the meeting points 
of the lines comprising the boundaries of these triangles. 

  Solution. Like in the previous problem, we consider the plane to be endowed with the 
structure of a complex plane. We need a description of its covering with disjoint 
equilateral triangles. For this we take the regular hexagon inscribed in the unit circle 
such that its vertices are the points 1, 1 + ε, ε, -1, ε2 = -(1+ ε), 1 + ε2 = - ε, and join the 
vertices with the centre of the circle (See Figure 1). One obtains six equilateral triangles. 
Then we move the hexagon by a translation of vector 1 + (1 + ε) = 2 + ε to obtain a new 
hexagon and six more equilateral triangles. The procedure can be continued indefinitely 
by using other translation, as given by the sums of two consecutive vertices. So we 
obtain a covering of the plane with disjoint equilateral triangles (See Figure 2). It is easy 
to see that the vertices of these triangles are exactly the complex numbers from the set  

Z[ε] = {a + bε | a, b  Z} . 

           

  

Figure 1 
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 Figure 2 

 

  Using this description of the vertices one can consider the problem. Assume by 
contradiction that there exists a square whose vertices are in the set Z[ε]. Then there are 

complex numbers z, u, v  Z[ε] such that  i = . The numbers u - z and v - z are 

also in the set Z[ε]. So, one obtains an equality of the form  

m + nε = i(p + qε), 

where m, n, p, q are integers. Using the exact value of ε one obtains 

m -  + I  = - + i(p - ), 

which is in contradiction to the condition m, n, p, q  Z. 

   

Problem 5.3.7 We are given a convex pentagon which satisfies the conditions: 

   (a) all interior angles are congruent, 

   (b) the lengths of all sides are rational numbers. 

  Show that the pentagon is regular. 

  Solution. Let A1A2A3A4A5 be the given pentagon and assume that it has the counter-

clockwise orientation (see Fig.1). Each side = , = , ... , =  

can be considered as a vector. In the plane, these vectors can be translated to have a 
common origin O and such that the vector a1 is along the real axes (see Fig.2). 

                                                 
7
 This is Problem 2 from 18th Balkan Mathematical Olympiad, 2001. 
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Figure 1  

 

Figure 2 

The angle between two consecutive vectors is 720 =  and = 0. It is natural to 

introduce the fifth complex root of unity, ω = cos  + isin . Using complex numbers 

instead of vectors we obtain the equalities  
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a1 = |a1|, a2 = |a2|ω, a3 = |a3|ω
2, a4 = |a4|ω

3, a5 = |a5|ω
4. 

So, we obtain the equality 

|a1| + |a2|ω + |a3|ω
2 + |a4|ω

3 + |a5|ω
4 = 0. 

It is an equation with rational coefficients |a1|, ... , |a5|, which is satisfied by the complex 
number ω. But ω is a root of the irreducible integer polynomial  

Φ5(X) = X4 + X3 + X2 + X + 1. 

 Hence |a1| = |a2| = ... = |a5|, and the result follows. 

   

Problem 5.4.8  We are given a convex octagon which satisfies the conditions: 

(a) all interior angles are congruent 

(b) the lengths of all its sides are rational numbers.  

Show that the octagon has a centre of symmetry. 

  Solution. Like in the previous problem, we assume that the sides of the octagon are 

vectors , , ... ,  which have rational lengths, say |a1|, |a2|, ... ,|a8|. Put all these 

vectors in the same origin O of the complex plane and associate with them the complex 
numbers a1, a2, ... , a8. 

                         

 

Figure 1 

 

 

 

                                                 

8 A problem from the Russian Mathematical Olympiad. 
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Figure 2 

The angle between two consecutive vectors is φ = 450 = . Let us denote ω = cos + 

is in . Then, the following equality holds:  

a1 + a2ω + a3ω
2 + ... + a8ω

7 = 0. 

Since ω4 = -1, the equality becomes 

(a1 - a5) + (a2 - a6)ω +(a3 - a7)ω
2 + (a4 - a8)ω3 = 0. 

Hence, we deduce that ω is a root of a rational polynomial of degree at most 3. It is 
known that the minimal polynomial of ω over Q is Φ8(X) = X4 + 1. Therefore a1 = a5, a2 = 
a6, a3 = a7 and a4 = a8. These equalities show that the pairs of opposite sides of the 
octagon define four parallelograms. These parallelograms have a common centre of 
symmetry which turns to be a centre of symmetry of the octagon. 

  Problem 5.5. The equilateral triangles A2B1A3, A3B2A1 and A1B3A2 are drawn externally 
on the sides of a triangle A1A2A3. 

  a) Show that the lines A1B1, A2B2, A3B3 meet at a common point F. 

  b) Show that A1FA2 = A2FA3= A3FA1= 1200 (F is the Fermat-Toricelli point of the 
triangle A1A2A3) 

  c) Show that FB1 = FA2 + FA3,  FB2 = FA3 + FA3 and  FB3 = FA1 + FA2. 

  Solution. We assume that the triangle A1A2A3 has the counter-clockwise orientation. 
Then the triangles  A2B1A3, A3B2A1 and A1B3A2 also have the counter-clockwise 
orientation (see Figure 1) 
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Figure 1 

 

By the considerations from 3.2 the complex coordinates of the points B1, B2, B3 are given 
by the formulas: 

b1 + a3ε + a2ε
2 =0, 

b2 + a1ε + a3ε
2 = 0, 

b3 + a2ε + a1ε
2 = 0. 

Summing up these three equalities and taking in account that ε + ε2 = -1 one obtains the 
equality 

b1 + b2 + b3  = a1 + a2 + a3. 

The equations of the lines  A1B1, A2B2, A3B3 can de written by using the considerations 

from 2.1 and one obtains the following linear equations in z and : 
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These three lines are concurrent if and only if there exist a point of the plane whose 

coordinate gives a solution (z, ) of the above system. This condition means that the 
following determinant vanishes: 

 

Summing up to the first the next two lines of the determinant and taking in account the 
fact that 

b1 + b2 + b3 = a1 + a2 + a3, one obtains that the determinant vanishes if and only if the 
following equality holds: 

 + + = . 

  For the next point of the problem, we will prove more: the line segments A1B1 and A2B2 
have equal lengths and the angle between them is 1200. For this, it is sufficient to prove 
the equality (b1 - a1)ε = b2 - a2. Using the formula which gives the expressions of b1, b2 
the equality follows immediately. 

  The last part of the problem is a consequence of the Ptolemy's theorem applied to the 
cyclic quadrilaterals FA2B1A3, FA3B2A1, FA1B3A2. So, one obtains that for any point of the 
circumcircle of an equilateral triangle, the distance any one of the vertices equals the 
sum of distances to the other two vertices. This is a classical result, known as the 
theorem of Schooten. 

  Problem 5.6. Let ABCD be a cyclic quadrilateral and let HA, HB, HC, HD be the 
orthocentres of the triangles BCD, CDA, DAB and ABC, respectively. Show that the 
quadrilaterals ABCD and HAHBHCHD are congruent. 

  Solution. Assume that the circumcentre O of the quadrilateral is the origin of the 
complex plane. Then the orthocentres of the triangles BCD, CDA, DAB, ABC have the 
complex coordinates hA = b + c + d, hB = c + d + a, hC = d + a + b, hD = a + b + c, 

respectively. Note that hA - hC = a - b, thus the vectors  and   are parallel, have 

the same length and different  orientations. Using the same argument for the other pairs 
of consecutive sides of the quadrilateral, we obtain the desired conclusion. 

Remark. Following the above solution one may obtain an interesting characterisation of 
the quadrilateral HAHBHCHD. Let S be the point corresponding to the complex number  

s = . 

Then  

a + hA = b + hB = c + hC = d + hD = 2s.  

These equalities show that HA, HB, HC, HD are the reflections of the points A, B, C, D 
along the point S. 
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Figure 1 

 

  Problem 5.7. Let ABC be a triangle and P be an interior point such that PAC = 

PBC. Let K, L be the feet of the perpendicular projections from P on AC, BC, 
respectively and D be the midpoint of the segment AB. Show that DK = DL. 

  Solution. In this problem, the point C is irrelevant. We may assume that the midpoint of 
the segment AB is the origin of the complex plane, so that D = O and b = - a. Take an 
arbitrary point P in the plane and then construct the points K and L as in the problem: 

PAK = PBL= α and PK  AK, PL  BL (see Figure 1) 

                                 

Figure 1 

 

  In terms of complex coordinates, the numbers k and l are defined by the following 
expressions: 
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p – k = i(a - k)tanα,  

a + l = i(l - p)cotα. 

From the above formulas one obtains for k and l the equalities 

k =   and l =   

It is now obvious that k  = l , which means that |k|2 = |l|2. 

  Problem 5.8. Show that the line joining the midpoints of the diagonals of a quadrilateral 
circumscribed in a circle passes through the centre of this circle (Newton line of the 
quadrilateral). 

  Solution. Assume that the centre of the inscribed circle is the origin O of the complex 
plane and that its radius is 1. Let X, Y, Z, W be the tangency points of the sides AB, BC, 
CD, DA, respectively and x, y, z, w be their complex coordinates. Since |x| = |y| = |z| = 

|w| = 1 we have  = ;  = ;   = ;   = . The idea of the solution is to 

compute the coordinates a, b, c, d in terms of x, y, z, w. 

                    

Figure 1 

 

  Let K be the midpoint of the segment XW. Since A is the meeting point of the tangents 
AX and AW the line AK is the perpendicular bisector of the segment XW and the points 
O, K, A are collinear (see the figure). The triangles ΔOKX and ΔOWA are similar and 
similarly oriented. By the condition 3.2 we have 
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From this equation and taking into account that k =  one obtains that the number a 

is given by   

a = . 

In the same way 

b = ; c =  ; d = . 

Let M be the midpoint of the diagonal segment AC. Then  

m =  

In the same way the midpoint N of BD has coordinate 

n =  

Accordingly to 2.1, the condition that the points M, O, N are collinear can be written in 

the form m = n. Using the expressions from above and having in mind that  x  = ... 

= w  = 1, one has 

 

This expression is cyclic in x, y, z, w. Because n is obtained from m after a cyclic 

permutation, it follows that n has the same form. The required result follows. 

Problem 5.9.9 In a given triangle ABC, let ha be the length of the altitude from A, ma is 
the length of the median from A and R, r are the circumradius and inradius, respectively. 

Show the inequality  

and prove that the equality holds if and only if the triangle is equilateral. 

  Solution. Denote by S the area and by s the semiperimeter of the triangle. Then,  

2rma ≤ Ra   2ma  ≤    2maBC ≤ 2Rs. 

                                                 
9
 A problem from Romanian journal Gazeta Matematica,1981.  
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Assume that the circumcircle of ΔABC has the centre in the origin O of the complex 
plane and let a, b, c be the complex coordinates of the vertices. Then |a| = |b| = |c| = R. 
The left hand side of the required inequality can be computed as follows:  

         2maBC = 2|b - c||a - | = |b - c||2a - b - c| = |(b - c)(2a - b - c)|  

                      = |a(b - c) + b(a - b) + c(c - a)|   

                      ≤ |a||b - c| + |b||a - b| + |c||c - a| = 2Rs.  

Equality occurs if and only if the numbers a(b - c), b(a - b), c(c - a) have the same 
direction. This means that ΔABC is equilateral. 

2

c  b 
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SEQUENCES 
 

Péter Körtesi 
University of Miskolc, Hungary 

 
 
Section 1.  Revision 
  
This chapter is about sequences. It is recommended that the student reads first the 
notes on Sequences – Level 1, which mostly concern Arithmetic, Geometric and 
Harmonic Progressions.  Here we shall first summarize some of the results from that 
chapter.  
 
On Sequences – Level 1  we worked with an intuitive description of a sequence. If we 
like an exact definition, here is how we do it: 
 

Definition. An (infinite) sequence is a map f : ℕ → ℝ from the positive integers (natural 

numbers) to the real numbers. 
 
It is customary not emphasize the function that defines a sequence and instead of 
writing f(1), f(2), f(3), ... for the images of the natural numbers, to simply denote 
sequence as, for example,  

a1, a2, a3, a4, ... 

This is denoted with the shorthand notation (an), or (an)n∈ℕ  and an is called the general 

term. 
Sometimes we talk of finite sequences. By this we mean an initial finite set of terms of an 
infinite sequence.  For instance a1, a2, a3, a4, a5, a6, a7, a8 is a finite sequence of 8 terms 

A sequence may be described by giving the general term, e.g. , or by a 

recurrence relation which specifies the way further terms of a sequence are obtained 
from previous ones. For example the Fibonacci sequence is described by  

a1 = 1,  a2 = 1 and  an+2 = an+1 + an (for n ≥ 1) 
Examples of sequences given by linear recurrence relations are the arithmetic, 
geometric and harmonic progressions.  
   
Recall that if in a sequence (finite or infinite) any three consecutive terms an–1, an and 
an+1 satisfy the relation 

 

then it is an arithmetic progression. 
If in a sequence any three consecutive terms an–1, an and an+1 satisfy the relation 

 

then it is a geometric progression.  
Finally, if in a sequence of non-zero terms any three consecutive terms an–1, an and an+1 
satisfy the relation 

 

then it is a harmonic progression. 
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The same three progressions can be given recursively as follows: 

 , where a1, and r are given, is an arithmetic progression, 

 , where a1 and r are given, is a geometric progression, and 

 , where a1 and r are given (and a is not a positive integral multiple of 

r), is a harmonic progression.  
For the above three types of progressions, their general terms are given by 

,  and  respectively.  

 
Problem 1.  Prove that an identity similar to the definition holds for three "equidistant 
terms" an–k, an, an+k  for each of the three types of i.e. 

,  and , respectively. 

 
The sum of the first n terms of an arithmetic progression is given by 

. 

Similarly for a geometric progression we have 

 

Prove the above formulas as simple exercise (hints are given in Sequences – Level 1) 
 
Problem 2. Prove that for a geometric progression the product Pn of the first n terms is 
given by 

 

 
Problem 3. Prove that for the sum of the reciprocals of first n terms of the harmonic 
sequence we will have: 

 

  
Typical elementary problems for arithmetic progressions 
 
Problem 4. The first three terms of arithmetic progression are 20, 16.5 and 13. Find the 
fifteenth term. 
  

Solution. The common difference is  and . Thus 

. 

  

Problem 5. If the third term of an arithmetic sequence is 2, that is , and the ninth 

term is 20,  that is , find the sixth term. 
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Solution. Plug the given information into the formula  and this gives: 

 and . This simultaneous system has solution  

and  which means that . 

  
Observe that the problem could be solved more simply if using the formula for 

equidistant terms, as . 

  
Typical elementary problem for geometric progressions 
  
Problem 6. If the third term of a geometric sequence is 5 and the sixth term is −40, find 
the eight term 
  

Solution. Using the formula for the nth term we have , . 

Solving the system gives , with the real solution  and from there  

Thus  . 

  
Perhaps the most famous problem on geometric progressions is the Chess Master 
problem: 
  
Problem 7. A king promised to give to the chess master anything that he has if the 
master wins (which he easily did). The chess master asked that the king should put 1 
grain of wheat on the first square of the chess board, twice as much on the second one, 
twice as much than that on the third one, and so on for all of the 64 squares. Was the 
king happy with this modest request? Maybe, initially he was, but not so upon reflection 
of the facts. What do you think? 
 
  

Section 2.  Sequences given by linear recurrence relations 

 
Besides progressions there are other well known examples of sequences given by 
recurrence relations. The most famous is the Fibonacci sequence mentioned above, 

satisfying the second order linear recurrence relation  and the initial 

conditions a1 = 1, a2 = 1. Its first few terms are 
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... 

What can you say about the general term? Can we find a formula for an? It is not 
immediately obvious how to answer this question, and this is how we work:  
The crucial observation is that the stated recurrence relation and the first two terms 
completely determine the sequence. Indeed, if (bn) is a sequence satisfying 

and b1 = a1, b2 = a2 then we claim that bn = an for all n (not just n = 1 or n 

= 2). Indeed, we have  
b3 = b2 + b1 =  a2 + a1 = a3,     

hence  also                                   b4 = b3 + b2 =  a3 + a2 = a4, 
and generally, by a simple inductive argument, bn = an for all n. 
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To conclude, we shall seek a sequence (bn) satisfying and b1 = a1 = 1, b2 

= a2 = 1. 
One way to argue is to find a (non-zero) solution of form bn = rn of the stated second 
order linear recurrence relation.  

Substituting bn = rn in  and canceling the common factor we find that r 

must satisfy the so called characteristic equation  

. 
This equation has two roots,  

 and . 

Thus, both bn = =  and bn =  = satisfy the recurrence 

.  This should be clear, but let us give a proof:  

For bn = we have  

bn+2 – (bn+1 + bn) =  

Similarly for the case of bn = .   

Note that, due to the linearity of the recurrence, yet another solution is  

                                     bn = A + B =                  (*) 

for any choice of constants A, B. This is easily checked directly and we leave it to the 
reader. Thus we seek A and B so that the initial conditions b1 = a1=1, b2 = a2=1 are also 
satisfied.  
Putting n = 1 and n = 2 in (*) we find  
 

= 1 

and  

= 1 

Solving the system for A and B we will find , ,   

By the remarks above we conclude that  

. 

In other words we found a formula for the general term of the Fibonacci sequence.  
 
Here is another example: Find the general term of the recurrence relation 

 (n ≥ 2) subject to the initial conditions  and  

As before, trying a solution of the form an = rn  substituted in the recurrence gives (after 
cancellation) the characteristic equation 

r2 = 3r -2. 
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This has roots r1 = 1 and r2 = 2. Thus we expect a solution of the form an = A + B = A 

+ B2n, where the constants A, B are determined from the initial conditions  and 

 This is the subject of the next problem. 

  

Problem 8. Show that  (n = 0, 1, 2, ... ) is a solution of the recurrence 

relation  (n ≥ 2). Determine the values of the constants A and B that 

make this formula the specific solution of the given recurrence relation with the initial 

conditions  and  

 
Solution (direct, not using the theory developed except when necessary). First we plug 
the proposed solution into the recurrence relation. The left-hand side an is just 

. To write down the right-hand side we note that the proposed solution gives 

us  and . Thus the right-hand side  is 

. Therefore, we want to verify that the equation 

 

holds for all . This is a simple exercise in algebra. Starting from the right-hand side 
we have     

        

                                                           

 

which is exactly the left-hand side. 

Now we find the appropriate A and B so that the initial conditions ,  are 

also satisfied. 

   Plugging  into our solution and invoking the given condition that , we 

obtain the equation . Plugging  into our solution and 

invoking , we obtain the equation . Thus we need to 

solve the system of simultaneous linear equations 

 

An easy exercise in elementary algebra yields  and . Therefore, the 
unique solution of the recurrence relation with the stated initial conditions is 

. This tells us, for instance, that , without having to 

compute the terms of the sequence one by one until we reach . 

 
Let us summarize: From the two examples above it should be clear that to solve a 
second order linear recurrence of the from an+2 + pan+1 + qan = 0 with a1, a2 given we first 
solve the quadratic equation r2 +pr + qr = 0. If it has two distinct roots r1 and r2 , then the 

general term is of the form an = A + B . The constants A and B are determined from 

a1, a2 by solving a system. In fact this idea can be generalized to linear recurrence 
relations 

an+k + p1an+k-1 + ... + pkan = 0 
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of k degree, with k initial conditions given, for a long as the kth degree characteristic 
equation  

rk + p1 r
k-1 + ... + pk = 0 

that arises, has k distinct roots. Then the general term is of the form  

an = A1 + A2 + ... + Ak  

 

Section 3. Monotonic sequences, bounded sequences 
 
In this and the next section we shall study some properties sequences may or may not 
have, such as monotonicity, boundedness or convergence. The exact definitions will be 
given below. In the end we shall be able to answer questions such as  
 
Question. Consider now the sequence: 

, , , ... , , ... 

Is this an increasing sequence? Is this a bounded sequence? Does the sequence a 
limit? 
  
Here are some definitions. 
  

Definition. A sequence (an)n∈ℕ  is said to be non-decreasing  if  for all indices 

n. If the inequality is strict, then it is called increasing. Similarly we define non-increasing 

sequences (if  for all indices n), and decreasing ones. Sequences which are 

either non-decreasing or non-increasing, are called monotonic. 
 

Definition. A sequence (an)nN is said to be bounded above if there is a number M such 

that  for all indices n. Such a number M is called an upper bound of the 

sequence. Similarly, the sequence is said to be bounded below if there is a number m 

such that  for all indices n. Such a number m is called an lower bound of the 

sequence. Finally, a sequences is said to be bounded if it is at the same time both upper 
bounded and lower bounded.  
 
For example the sequence an = n is a) increasing, b) bounded below and c) not bounded 
above.  Similarly, the constant sequence bn = 1 is a) non-decreasing, b) non-increasing 
and c) bounded. 
Note that an upper bound of a sequence, if there is one is not unique: If M is an upper 

bound, so are M +  or M + 1, to name just a few. Similarly for lower bounds.   

 
Problem 9. Show that a sequence (an) is bounded if and only if there is an M > 0 such 
that  

 (for all n) 

 
Problem 10. Study the monotonicity of the following sequences: 

 a) , b) , c) , d) , 
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 e) , f) , g) , h)  . 

Problem 11. Study the monotonity of the following sequences: 

 a) , b) , c) , d)  

 e) , f) , g) ,  

 h)  . 

 
Problem 12. Study whether the following sequences are bounded, or not: 

 a) , b) , c) , d) , 

 e) , f) , g) , h)  . 

 
Problem 13. Study whether the following sequences are bounded, or not: 

 a) , b) , c) , d)  

 e) , f) , g) ,  

 h) .  

 

Problem 14. Show that the sequence (sn), where sn = , is not 

bounded above. You may use the inequality x ≥ log (1 + x)  for x ≥ 0 (which is easily 
proved using calculus). 
 
Solution. From the given inequality we have  
              

                   ≥ log(1 + 1) + log(1 + ) + log(1 + ) + ... + log(1 + 

) 

                                                     = log  

                                                     = log (n + 1) 
so it is not bounded above.  
 
Sequences given by recurrence relations can also be tested for monotonicity or 
boundednes. Here is an example. 
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Problem 15. Prove that the sequence given by , where , is a 

bounded, increasing sequence. 
  
Solution. For positive sequences it is enough to find an upper bound (0 is a lower 
bound). 

We observe that , hence .  

We proceed by induction, and suppose that , for n = k . Then for n = k + 1 we 

have 

, 

hence, by induction, the sequence is bounded. 

To prove monotonicity we have to compare  with an. Since  we 

try to see whether  for all n.  

Squaring both sides we see that  is equivalent to , or 

. Now, the parabola x2 – x - 1 (this stands on the right hand side) has 

roots , , hence for all  it will be negative. But we saw before 

that , for all natural numbers n, and so . Hence  as 

required. 
 

(Note that once we proved that the sequence is increasing, the bounds  can 

be improved to , for all natural numbers. 

 
We remark that the sequence studied in the previous problem is precisely the sequence 
appearing in the Question at the beginning of this Section. Thus we answered two of the 
questions stated there. It remains to discuss whether it has a limit. This is the topic 
studied in the next Section.  
 
 

Section 4. Convergence of sequences 
  
Next we discuss the convergence of sequences. Roughly speaking (the exact definition 
follows) a sequence (an) “approaches” or “converges” to a limit L, as n increases, if given 

any “tolerance” , the terms of the sequence eventually differ from L by less than ε.  

More precisely,  
 
Definition. We say that the sequence (an) converges to a real number L, written as 

, if for any given , there exists a positive integer N such that  for all 

, we have 

                                                                .                                               (1) 

 
If a sequence is not convergent, it is called divergent. The number L is said to be the 
limit of the sequence (an).   
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Instead of the notation we sometimes use the shorter notation = L or 

the alternative .   

Some times is more convenient to view the inequalities in (1) in the equivalent form 

 

  
Note that if (an) converges, the N stated in the definition is not unique: If a particular N is 

sufficient to show (1) for all , then any larger one is also sufficient. Note further 
that, generally, N depends on ε. Changing ε may result in a different choice for N.  
Another thing to observe is that it follows immediately from the definition that if the 

sequence (an) converges then so does the sequence (an+1) and in fact  . 

Iterating this we have  for any fixed k  N. 

 
Examples.  a) The constant sequence (an), where an = c for all n, converges. In fact 

. 

b) The sequence  converges to 0. In symbols, . 

Proof. a) This is obvious since, given , for any N we have for all  that  

c – ε < c < c + ε 

 b) Let  be given. Take for N any integer larger than . For example N =  

would do. Then for  =  >  we have . As n > 0 we in fact have, for all 

,  

. 

By definition, then, .  

 
The next two problems can by solved easily using the theorems we will develop later. 
However the reader is asked to solve them now using directly the definition.  
 

Problem 16. Prove that the sequences ,  and  are convergent to 0. 

Problem 17. Prove that ,  and . 

 
Problem 18. Show that the sequence an = (-1)n  does not converge to 0. More generally, 
show that it does not converge to any number L.  
 

(Hint for the first part. Show that for > 0  it is not possible to find N such that for all 

n ≥ N we have ).  
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Problem 19. Prove that if a sequence (an) satisfies , then . Is 

the converse true?  
 

Solution. This is immediate using the inequality 0 ≤ . The 

converse is false as the example of the non-convergent an = (-1)n  shows, in which 

.  

 
Before giving more problems concerning convergent sequences, let us prove some 
useful theorems.  
 
Theorem 1. Every convergent sequence is bounded. 
 

Proof.  Let (an) be a sequence with . Apply the definition of convergence for 

. For this ε > 0, there is an N such that for all  we have , and so 

 Set M = max { , , ... , , }. It is now clear that for all 

n we have  

 
Note that the converse of this theorem is false, as the sequence (-1)n is bounded but not 
convergent.  
 

Problem 20. Suppose that (an) is a sequence of non-zero terms with , where 

L ≠ 0. Show that the sequence  is bonded. (Using this result we shall show below 

that actually the later sequence is convergent). 
 

(Hint. Set > 0. Then for some N and all n ≥ N we have   and so 

 ). 

 
Theorem 2. If (an), (bn) and (cn) are three sequences such that an ≤ bn ≤ cn for all n and 

such that . Then also .  

 
Proof. Let  be given. As , there exists an N1 such that for n ≥ N1 we 

have  

                                                      (1) 

(actually we have , but we shall not use the second inequality). 

Similarly there exists an N2 such that for n ≥ N2 we have  

                           .                           (2) 

Set N = max (N1 , N2). Then for all n ≥ N, both (1) and (2) hold giving 
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≤ bn ≤ . 

In other words, for all n ≥ N we have bn  implying that (bn) converges 

and that .  

 

Theorem 3. Suppose that (an), (bn) are sequences with  and  and 

suppose p, q  are constants.   

    Then  and . If also  for all n and 

 then  

Proof.  Let  be given. Note that also  is > 0. Using this in the definition of 

, there exists an N1 such that for n ≥ N1 we have  

                                                                             (1) 

Similarly there exists an N2 such that for n ≥ N2 we have  

                                                                              (2) 

Set N = max (N1 , N2). Then for all n ≥ N, both (1) and (2) hold giving 
 

 

Hint for a proof of : Use  

 

where M is an upper bound of the (convergent) sequence (bn). 

Hint for the proof of  First note that, by the previous, it is sufficient to prove 

 Use now  where M is an upper bound of 

, which exists according to Problem 20.) 

  

Problem 21.  Prove that the sequence  converges to 0. 
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(Hint. use the fact that  -  and that .) 

 

Problem 22. Find the limit .  

 
Solution. Dividing numerator and denominator by n3 and making repeated use of 
Theorem 3, we have 

=  =  = . 

Problem 23. Let  and  for . Find an expression for 

an, and prove that the sequence (an) converges. 
  

Solution. Calculating , and , we 

can "guess" that . Indeed, this can easily be shown by induction using the 

recurrence relation, and is left to the reader. It is now easy to show that . 

 

 Problem 24.  Suppose (an) is a sequence of positive terms such that . Prove 

that and, more generally,  for any fixed k  N. 

(Hint. For the case L ≠ 0 use  ) 

Some very important limits are given in the next three problems. 
 

Problem 25.  Prove that for all c with  we have  

Solution. For c = 0 this is immediate, so we may assume 0 < . Then for some d > 

0 we have   so 0 <  (this last uses the Bernoulli 

inequality    (1 + x)n  ≥ 1 + nx , if x ≥ 0. It can be proved by expanding the binomial on the 

left. It can also be proved by induction). But as , the required conclusion 

follows from Theorem 3. 
 

Problem 26.  Prove that for all a > 0 we have . 

Solution. If a = 1 this is clear. Take a > 1. Then  so we may write 

where dn > 0. Thus a = (1 + dn)
n ≥ 1 + n dn (by the Bernoulli inequality (1 + x)n  ≥ 1 + nx , 

for x ≥ 0). Hence we have  
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0 < dn <  

As , Theorem 2 shows that . But then, using Theorem 3,  

 

For the case 0 < a < 1, consider , which is > 1. By what was just proved we have 

 So, inverting and using Theorem 3,  again. 

 

Problem 27.  Prove that  . 

(Hint. Use an argument similar to the one in the previous problem only replace the 

Bernoulli inequality with the stronger one (1 + x)n ≥ 1 + nx + ≥ 1 + , 

for x > 0.) 
  
Also, it is important to know (but we shall not prove) that the factorial grows faster than 
the exponential function in the sense that for any c > 0 we have 

, 

and the exponential grows faster  than power functions:  

              .  

 
Problem 28. Let (xn) be an arithmetic progression of positive terms. Study the 

convergence of the sequences an =  and sn = . 

Solution. For an arithmetic progression we have , where . Note 

that , since the terms are positive. Thus 

, 

and so . 

For sn =  we have      

= . 

But the right hand side is not bounded above (see Problem 14). So, by Theorem 1, the 
sequence (sn) is divergent. 
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Problem 29. Let (xn) be a geometric progression consisting of positive terms. Study the 

convergence of the sequences an =  and pn = . 

Solution. For the terms of a geometric progression we have . Here x1 and r are 

> 0, We  have 

 

                

    

 
 For the second sequence we have 

 

 

Section 5. Monotonicity and convergence  

  
One of the most important theorems on convergence of sequences is the following:  
 
Theorem 4. Every bounded above non-decreasing sequence is convergent. 
 
The proof is beyond the scope of these notes, but it does not mean that it is difficult. 
What happens is that the proof depends on the axioms that define real numbers, and in 
particular on the so called Completeness Axiom10.   
Using Theorem 4, or directly, it can be shown that every bounded below non-increasing 
sequence also converges. 
Here are some applications of Theorem 4.  
For a start we prove that the sequence referred to on the Question of Section 3 and 
studied in Problem 15, is convergent. 
  

Problem 30. Prove that the sequence given by , where , is 

convergent. What is its limit? 
 
Solution. We have already shown that the sequence (an) is bounded and increasing. By 
Theorem 4, it converges and it is required to find the limit.  

Set . Now, from the recurrence relation and taking limits we 

have  

                                                 
10

 It states that bounded every non-empty set of real numbers has a least upper bound (also 
called supremum). This means that there is an upper bound of the set which is less than or equal 
any other upper bound. It can be shown that the limit referred to in Theorem 4, of a bounded non-
decreasing sequence, is its least upper bound considered as a non-empty bounded set.   
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                                                       .                                   (1) 

But  (see Section 4, after the definition of convergence). Also, using 

Theorem 3 and Problem 24  we have  
 

. 

 Comparing the two sides of (1) we conclude that . Squaring both sides we 

get , with the solutions , . The conditions of the 

problem impose , hence  is the only possible solution. Thus we 

conclude . 

 

Problem 31. Consider the sequence , where . Prove that the 

sequence is decreasing and bounded, hence convergent. What is its limit? 
 
(Hint. Recall the inequality  sinx < x, for all x > 0. The limit L must satisfy L ≥ 0 and L = 
sinL.)  
  

Problem 32. Consider the sequence . Prove that it is bounded, 

increasing, and hence convergent. 
Proof.  By the A.M. – G.M. inequality applied to the n + 1 numbers  

1,  

we get and so , which gives an+1 > an, 

showing that (an) is increasing.  
To show that (an) is bounded, use the binomial expansion to get 
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                  = 3. 
This completes the proof. 
 

 

The limit of the sequence studied in the previous problem plays a very important role for 
Analysis. It is often taken as the definition of the famous number e of Euler, which is the 

base of the Neperian logarithms. Thus, by definition,  
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