Παραγωγή τύπων και προσδιορισμός του εμβαδού δισδιάστατων σχημάτων που σχεδιάζονται σε πλέγμα κουκκίδων

ΕΙΣΑΓΩΓΗ

Το σχέδιο μάθησης προβλέπει δραστηριότητες για τους μαθητές που εμπλέκονται σε μια πραγματική ερευνητική διαδικασία με εφαρμογή στην αξιολόγηση υπηρεσιών. Διδάσκονται βασικά θέματα και στάδια της ερευνητικής διαδικασίας, από τη διατύπωση του προβλήματος και του στόχου μέχρι την τελική παρουσίαση των αποτελεσμάτων και των συμπερασμάτων.

ΜΑΘΗΣΙΑΚΆ ΑΠΟΤΕΛΈΣΜΑΤΑ

Στο τέλος του μαθήματος, ο μαθητής θα είναι σε θέση:

  • Για να εκφράσετε μια μεταβλητή μέσω άλλων μεταβλητών σε μια δεδομένη εξίσωση
  • Για την εκτέλεση απλών τύπων
  • Για να προσδιορίσετε το εμβαδόν των 2D σχημάτων που σχεδιάζονται σε ένα πλέγμα κουκκίδων
  • Να χρησιμοποιείτε τύπους από τα μαθηματικά και άλλα μαθήματα
  • Να παρουσιάζουν συνοπτικά, τεκμηριωμένα επιχειρήματα για να εξηγούν λύσεις ή γενικεύσεις χρησιμοποιώντας: σύμβολα, διαγράμματα ή γραφικές παραστάσεις
  • Να αναπτύσσουν το αίσθημα της συνεργασίας και της ενσυναίσθησης με τους συμμαθητές τους.

ΠΏΣ ΛΕΙΤΟΥΡΓΕΊ

Δραστηριότητα 1: Γίνεται συζήτηση σχετικά με τις προκαταλήψεις για το εμβαδόν των κανονικών σχημάτων και τον τρόπο εύρεσης του τύπου για το εμβαδόν αυτού του σχήματος που σχηματίζεται από την ένωση ενός ορθογωνίου και δύο ημικυκλίων και δείχνει το μοντέλο του σχήματος που έχει προετοιμαστεί εκ των προτέρων. Οι μαθητές εξηγούν τις απαντήσεις τους ότι το σχήμα σχηματίζεται από τη συνένωση ενός ορθογωνίου και δύο ημικυκλίων, κάτι που μπορεί να φανεί από την κοπή των τμημάτων και τη συνένωση των ημικυκλίων και να πάρουμε έναν κύκλο. Το εμβαδόν είναι το άθροισμα των εμβαδών του ορθογωνίου και του κύκλου και στη συνέχεια γράφουν τον τύπο για το εμβαδόν της μορφής

P = w ^ 2 – π / 4 + x – w

Δραστηριότητα 2: Ο εκπαιδευτικός δίνει μια δραστηριότητα στην οποία οι μαθητές σε ζευγάρια αναζητούν μια σύνδεση μεταξύ του εμβαδού των σχημάτων που σχεδιάζονται σε ένα πλέγμα με κουκκίδες, τα σημεία στο σχήμα και τα σημεία στην περίμετρο), δηλαδή, εξετάζουν τον τύπο για το εμβαδόν Α, στα σχήματα που σχεδιάζονται σε ένα πλέγμα με κουκκίδες (με σημεία στο σχήμα και p σημεία στην περίμετρο) (θεώρημα Peak).

Ο δάσκαλος κάνει ερωτήσεις:

  • Πώς καταγράφετε τα ευρήματά σας;
  • Παρατηρείτε κάποιο μοτίβο;
  • Μπορείτε να βρείτε έναν γενικό κανόνα;

Συμπεραίνεται ότι το εμβαδόν της μορφής είναι κατά ένα μικρότερο από το άθροισμα των σημείων της μορφής και των μισών σημείων της περιμέτρου και προκύπτει ο τύπος

A = I + p / 2 – 1 γνωστό ως θεώρημα του Pick.

Οι μαθητές σε ζευγάρια σχεδιάζουν σχήματα σε κουκίδες και στη συνέχεια μετρούν τις κουκίδες στο σχήμα και τις κουκίδες στην περίμετρο του σχήματος και υπολογίζουν το εμβαδόν τους χρησιμοποιώντας τον τύπο Pick στην ίδια δραστηριότητα με τη χρήση γεωμετρικού πίνακα.

Οι λύσεις που προέκυψαν συζητούνται. Τα ζευγάρια αυτοαξιολογούνται.

Οι μαθητές σε ζευγάρια χρησιμοποιούν την εφαρμογή GeoGebra για να σχεδιάσουν σχήματα και στη συνέχεια να μετρήσουν τα σημεία στο σχήμα και τα σημεία στην περίμετρο του σχήματος και να υπολογίσουν το εμβαδόν με τον τύπο Peak και στη συνέχεια να ελέγξουν την απάντηση στο μενού υπολογισμού εμβαδού.

Δραστηριότητα 3: Στην αυλή του σχολείου, κατασκευάζεται ένα σχήμα με τη βοήθεια ενός σχοινιού και καραβάκια και στη συνέχεια μετριούνται τα σημεία του σχήματος και τα σημεία στην περίμετρο του σχήματος και υπολογίζεται το εμβαδόν του με τη χρήση της θεωρίας της κορυφής.

ΓΙΑΤΊ ΕΊΝΑΙ ΚΑΛΉ ΠΡΑΚΤΙΚΉ

Με την ανάπτυξη αυτών των δεξιοτήτων, οι μαθητές εκπαιδεύονται να μαθαίνουν μόνοι τους. 

Οι παραπάνω δραστηριότητες δρομολογούν την ανάπτυξη:

  • κριτική σκέψη
  • δημιουργικότητα
  • επικοινωνία 
  • συνεργασία

ΑΞΙΟΛΟΓΗΣΗ

Η πρώτη δραστηριότητα επιτρέπει τη διάγνωση των γνώσεων των μαθητών σχετικά με το θέμα και, σύμφωνα με τα αποτελέσματα που προκύπτουν, τον προγραμματισμό των μελλοντικών δραστηριοτήτων. Η δραστηριότητα με το θεώρημα Peak επιτρέπει τη σύνδεση με πραγματικές καταστάσεις, αναπτύσσει την κριτική σκέψη, αυξάνει τις επικοινωνιακές δεξιότητες, τη δημιουργικότητα και τη συνεργασία μεταξύ των μαθητών. Η χρήση ψηφιακών εργαλείων για την επικύρωση της αποκτηθείσας γνώσης παρέχει γρήγορη ανατροφοδότηση τόσο για τους μαθητές όσο και για τον εκπαιδευτικό.

Διαμορφωτική αξιολόγηση με την παρακολούθηση της δραστηριότητας των μαθητών κατά τη διάρκεια της διδασκαλίας.

ΕΝΤΑΞΗ

Ο δάσκαλος μπορεί να συμπεριλάβει στοιχεία που ο μαθητής μπορεί να χειριστεί, όπως: ελαστικά σχήματα σε γεωμετρικό πίνακα. (Ένα μοντέλο σχήματος 2d από χρωματιστό χαρτί).

Scroll to Top

Are you sure?

Hello mathematician!

Login